Wang-Hsin Lee, Evelyn A. Bates, Zachary A. Kipp, Sally N. Pauss, Genesee J. Martinez, Cheavar A. Blair, Terry D. Hinds Jr.
{"title":"Insulin receptor responsiveness governs TGFβ-induced hepatic stellate cell activation: Insulin resistance instigates liver fibrosis","authors":"Wang-Hsin Lee, Evelyn A. Bates, Zachary A. Kipp, Sally N. Pauss, Genesee J. Martinez, Cheavar A. Blair, Terry D. Hinds Jr.","doi":"10.1096/fj.202402169R","DOIUrl":null,"url":null,"abstract":"<p>The insulin receptor (INSR) has been shown to be hyperactive in hepatic stellate cells (HSCs) in humans and rodents with liver fibrosis. To explore HSC cellular mechanisms that INSR regulates during pro-fibrotic stimulation, we used CRISPR-Cas9 technology. We knocked out a portion of the <i>INSR</i> gene in human LX2 HSC cells (<i>INSR</i><sup>e5-8</sup> KO) that regulates insulin responsiveness but not the insulin-like growth factor (IGF) or transforming growth factor-β (TGFβ) signaling. The <i>INSR</i><sup>e5-8</sup> KO HSCs had significantly higher cell growth, BrdU incorporation, and lower <i>TP53</i> expression that suppresses growth, and they also exhibited increased migration compared to the Scramble control. We treated the scramble control and <i>INSR</i><sup>e5-8</sup> KO HSCs with insulin or TGFβ and profiled hundreds of kinase activities using the PamGene PamStation kinome technology. Our analysis showed that serine/threonine kinase (STK) activities were reduced, and most of the protein-tyrosine kinase (PTK) activities were increased in the <i>INSR</i><sup>e5-8</sup> KO compared to the Scramble control HSCs. To study gene transcripts altered in activated Scramble control and <i>INSR</i><sup>e5-8</sup> KO HSCs, we treated them with TGFβ for 24 h. We isolated RNA for sequencing and found that the <i>INSR</i><sup>e5-8</sup> KO cells, compared to control HSCs, had altered transcriptional responsiveness to TGFβ stimulation, collagen-activated signaling, smooth muscle cell differentiation pathways, SMAD protein signaling, collagen metabolic process, integrin-mediated cell adhesion, and notch signaling. This study demonstrates that reduced INSR responsiveness enhances HSC growth and selectively mediates TGFβ-induced HSC activation. These findings provide new insights into the development of more effective treatments for liver fibrosis.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202402169R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402169R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The insulin receptor (INSR) has been shown to be hyperactive in hepatic stellate cells (HSCs) in humans and rodents with liver fibrosis. To explore HSC cellular mechanisms that INSR regulates during pro-fibrotic stimulation, we used CRISPR-Cas9 technology. We knocked out a portion of the INSR gene in human LX2 HSC cells (INSRe5-8 KO) that regulates insulin responsiveness but not the insulin-like growth factor (IGF) or transforming growth factor-β (TGFβ) signaling. The INSRe5-8 KO HSCs had significantly higher cell growth, BrdU incorporation, and lower TP53 expression that suppresses growth, and they also exhibited increased migration compared to the Scramble control. We treated the scramble control and INSRe5-8 KO HSCs with insulin or TGFβ and profiled hundreds of kinase activities using the PamGene PamStation kinome technology. Our analysis showed that serine/threonine kinase (STK) activities were reduced, and most of the protein-tyrosine kinase (PTK) activities were increased in the INSRe5-8 KO compared to the Scramble control HSCs. To study gene transcripts altered in activated Scramble control and INSRe5-8 KO HSCs, we treated them with TGFβ for 24 h. We isolated RNA for sequencing and found that the INSRe5-8 KO cells, compared to control HSCs, had altered transcriptional responsiveness to TGFβ stimulation, collagen-activated signaling, smooth muscle cell differentiation pathways, SMAD protein signaling, collagen metabolic process, integrin-mediated cell adhesion, and notch signaling. This study demonstrates that reduced INSR responsiveness enhances HSC growth and selectively mediates TGFβ-induced HSC activation. These findings provide new insights into the development of more effective treatments for liver fibrosis.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.