Generalized Solutions in Isotropic and Anisotropic Elastostatics

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
D. Labropoulou, P. Vafeas, D. M. Manias, G. Dassios
{"title":"Generalized Solutions in Isotropic and Anisotropic Elastostatics","authors":"D. Labropoulou,&nbsp;P. Vafeas,&nbsp;D. M. Manias,&nbsp;G. Dassios","doi":"10.1007/s10659-025-10123-x","DOIUrl":null,"url":null,"abstract":"<div><p>Linear elasticity comprises the fundamental branch of continuum mechanics that is extensively used in modern structural analysis and engineering design. In view of this concept, the displacement field provides a measure of how solid materials deform and become internally stressed due to prescribed loading conditions, a fact which is associated with linear relationships between the components of strain and stress, respectively. The mathematical characteristics of these dyadic fields are combined within the Hooke’s law via the stiffness tetratic tensor, which embodies either the isotropic or the anisotropic behavior, exhibited by materials with linear properties. In fact, Hooke’s law is incorporated into the general law of Newton that actually defines the principal spatial and temporal second-order non-homogeneous partial differential equation for the displacement. In this study, we construct handy closed-form solutions for Newton’s law in the Cartesian regime, implying time-independence and considering the case of absence of body forces. Towards this direction, our aim is twofold, in the sense that an efficient analytical technique is introduced that generates homogeneous polynomial solutions of the displacement field for both the typical isotropic and the cubic-type anisotropic structure in the invariant Cartesian geometry. The reliability of the presented methodology is verified by reducing the results for each polynomial degree from the anisotropic to the isotropic eigenspace, in terms of a simple transformation, while we demonstrate our theory with an important application, wherein the effect of a prescribed force on an isotropic half-space to the neighboring half-space of cubic anisotropy is examined.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10123-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Linear elasticity comprises the fundamental branch of continuum mechanics that is extensively used in modern structural analysis and engineering design. In view of this concept, the displacement field provides a measure of how solid materials deform and become internally stressed due to prescribed loading conditions, a fact which is associated with linear relationships between the components of strain and stress, respectively. The mathematical characteristics of these dyadic fields are combined within the Hooke’s law via the stiffness tetratic tensor, which embodies either the isotropic or the anisotropic behavior, exhibited by materials with linear properties. In fact, Hooke’s law is incorporated into the general law of Newton that actually defines the principal spatial and temporal second-order non-homogeneous partial differential equation for the displacement. In this study, we construct handy closed-form solutions for Newton’s law in the Cartesian regime, implying time-independence and considering the case of absence of body forces. Towards this direction, our aim is twofold, in the sense that an efficient analytical technique is introduced that generates homogeneous polynomial solutions of the displacement field for both the typical isotropic and the cubic-type anisotropic structure in the invariant Cartesian geometry. The reliability of the presented methodology is verified by reducing the results for each polynomial degree from the anisotropic to the isotropic eigenspace, in terms of a simple transformation, while we demonstrate our theory with an important application, wherein the effect of a prescribed force on an isotropic half-space to the neighboring half-space of cubic anisotropy is examined.

Abstract Image

各向同性和各向异性弹性静力学的广义解
线弹性力学是连续介质力学的基本分支,在现代结构分析和工程设计中得到了广泛的应用。鉴于这一概念,位移场提供了固体材料在规定的加载条件下如何变形和产生内应力的度量,这一事实分别与应变和应力分量之间的线性关系有关。这些并进场的数学特征通过刚度四分张量在胡克定律中结合起来,体现了线性材料所表现出的各向同性或各向异性行为。事实上,胡克定律被纳入牛顿一般定律中,牛顿一般定律定义了位移的主要时空二阶非齐次偏微分方程。在本研究中,我们构造了笛卡尔坐标系下牛顿定律的方便的封闭解,暗示了时间无关性并考虑了没有物体力的情况。在这个方向上,我们的目标是双重的,在某种意义上,我们引入了一种有效的分析技术,为不变笛卡尔几何中的典型各向同性和立方型各向异性结构产生位移场的齐次多项式解。通过简化从各向异性到各向同性特征空间的每个多项式度的结果,验证了所提出方法的可靠性,同时我们用一个重要的应用来证明我们的理论,其中规定的力对各向异性半空间到邻近的立方各向异性半空间的影响进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信