Measuring the Magnetic Field Strength of a Transient X-ray Pulsar 4U 1901+03 by Its Variability on Different Time Scales

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
I. A. Mereminskiy, A. N. Semena, A. A. Lutovinov, S. S. Tsygankov, S. V. Molkov, D. I. Karasev
{"title":"Measuring the Magnetic Field Strength of a Transient X-ray Pulsar 4U 1901+03 by Its Variability on Different Time Scales","authors":"I. A. Mereminskiy,&nbsp;A. N. Semena,&nbsp;A. A. Lutovinov,&nbsp;S. S. Tsygankov,&nbsp;S. V. Molkov,&nbsp;D. I. Karasev","doi":"10.1134/S1063773724700506","DOIUrl":null,"url":null,"abstract":"<p>By combining data from several X-ray telescopes (Swift/XRT, NICER, Chandra) we reconstructed a profile of the 2019 outburst of accreting X-ray pulsar 4U 1901+03 from its peak down to the return to the ‘‘low’’ state. Softening of the X-ray spectrum and disappearance of the pulsations at a later stages of the outburst tentatively indicates that the source transitioned to the ‘‘propeller’’ state at luminosity about <span>\\(10^{36}\\)</span> erg s<span>\\({}^{-1}\\)</span>, which corresponds to a magnetic field strength of <span>\\(B\\lesssim 10^{12}\\)</span> G at the neutron star surface. We also investigated the fast X-ray variability that was observed during the peak of 2003 outburst. The shape of the power spectrum could be described with a broken power law, with a break frequency of 7.5 Hz. Assuming that this frequency corresponds to a viscous frequency at a magnetospheric boundary we estimated magnetic field strength as <span>\\(B\\approx 7\\times 10^{11}\\)</span> G, which is similar to the estimate obtained from observed transition to the ‘‘propeller’’ regime.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"50 10","pages":"600 - 607"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773724700506","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

By combining data from several X-ray telescopes (Swift/XRT, NICER, Chandra) we reconstructed a profile of the 2019 outburst of accreting X-ray pulsar 4U 1901+03 from its peak down to the return to the ‘‘low’’ state. Softening of the X-ray spectrum and disappearance of the pulsations at a later stages of the outburst tentatively indicates that the source transitioned to the ‘‘propeller’’ state at luminosity about \(10^{36}\) erg s\({}^{-1}\), which corresponds to a magnetic field strength of \(B\lesssim 10^{12}\) G at the neutron star surface. We also investigated the fast X-ray variability that was observed during the peak of 2003 outburst. The shape of the power spectrum could be described with a broken power law, with a break frequency of 7.5 Hz. Assuming that this frequency corresponds to a viscous frequency at a magnetospheric boundary we estimated magnetic field strength as \(B\approx 7\times 10^{11}\) G, which is similar to the estimate obtained from observed transition to the ‘‘propeller’’ regime.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信