Understanding the adsorption mechanism of geosmin, linalool, and o-cresol on Machilis hrabei olfactory receptor MhOR5 via statistical physics modeling and molecular docking simulation
Ismahene Ben Khemis, Salah Knani, Fatma Aouaini, Ghadeer Mohsen Albadrani, Amani Alruwaili, Abdelmottaleb Ben Lamine
{"title":"Understanding the adsorption mechanism of geosmin, linalool, and o-cresol on Machilis hrabei olfactory receptor MhOR5 via statistical physics modeling and molecular docking simulation","authors":"Ismahene Ben Khemis, Salah Knani, Fatma Aouaini, Ghadeer Mohsen Albadrani, Amani Alruwaili, Abdelmottaleb Ben Lamine","doi":"10.1007/s00894-025-06327-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This article suggests that the olfaction process can be simplified to an adsorption mechanism by utilizing the <i>Machilis hrabei</i> olfactory receptor MhOR5 as a biological adsorbent. The odorant molecules such as geosmin, linalool, and o-cresol were used as adsorbates. The aim of the present study is to provide new insights into the docking process of the tested odorants on MhOR5 using numerical simulation via an advanced statistical physics model to fit the corresponding response curves.</p><h3>Methods</h3><p>In the present work, an advanced theory based on statistical physics formalism is applied to understand and analyze the experimental dose-olfactory response curves of three odorant molecules on the <i>Machilis hrabei</i> olfactory receptor. Indeed, a monolayer model with four energy levels developed using the grand canonical ensemble was successfully applied to analyze the adsorption mechanism of geosmin, linalool, and o-cresol on MhOR5 through the interpretation of the different fitted parameters. Stereographically, it was found that geosmin, linalool, and o-cresol molecules were docked on MhOR5 binding pockets with nonparallel orientations (multi-molecular process) since all the numbers of the studied odorants adsorbed on one binding pocket were superior to 1. Energetically, the values of the molar adsorption energies <i>ΔE</i><sub>i</sub> (<i>i</i> = 1, 2, 3, and 4) related to the four types of binding pockets (varied between 6.18 and 18.43 kJ/mol) demonstrated that the three odorants were exothermically and physically docked on MhOR5 since all values of <i>ΔE</i><sub>i</sub> were positive and inferior to 40 kJ/mol. The proposed model may also be applied to calculate and interpret two thermodynamic potentials: the internal energy <i>E</i><sub>int</sub> and adsorption entropy <i>S</i><sub>a</sub>. Additionally, the physicochemical parameters may be used to stereographically and energetically characterize the heterogeneity of the insect MhOR5 surface. The docking simulation results demonstrated that the estimated binding affinities or energy score values (varied between 6.27 and 18.40 kJ/mol) were slightly similar to molar adsorption energy values and were included in the adsorption energy bands of the three adsorption energy distributions (AEDs).</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06327-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
This article suggests that the olfaction process can be simplified to an adsorption mechanism by utilizing the Machilis hrabei olfactory receptor MhOR5 as a biological adsorbent. The odorant molecules such as geosmin, linalool, and o-cresol were used as adsorbates. The aim of the present study is to provide new insights into the docking process of the tested odorants on MhOR5 using numerical simulation via an advanced statistical physics model to fit the corresponding response curves.
Methods
In the present work, an advanced theory based on statistical physics formalism is applied to understand and analyze the experimental dose-olfactory response curves of three odorant molecules on the Machilis hrabei olfactory receptor. Indeed, a monolayer model with four energy levels developed using the grand canonical ensemble was successfully applied to analyze the adsorption mechanism of geosmin, linalool, and o-cresol on MhOR5 through the interpretation of the different fitted parameters. Stereographically, it was found that geosmin, linalool, and o-cresol molecules were docked on MhOR5 binding pockets with nonparallel orientations (multi-molecular process) since all the numbers of the studied odorants adsorbed on one binding pocket were superior to 1. Energetically, the values of the molar adsorption energies ΔEi (i = 1, 2, 3, and 4) related to the four types of binding pockets (varied between 6.18 and 18.43 kJ/mol) demonstrated that the three odorants were exothermically and physically docked on MhOR5 since all values of ΔEi were positive and inferior to 40 kJ/mol. The proposed model may also be applied to calculate and interpret two thermodynamic potentials: the internal energy Eint and adsorption entropy Sa. Additionally, the physicochemical parameters may be used to stereographically and energetically characterize the heterogeneity of the insect MhOR5 surface. The docking simulation results demonstrated that the estimated binding affinities or energy score values (varied between 6.27 and 18.40 kJ/mol) were slightly similar to molar adsorption energy values and were included in the adsorption energy bands of the three adsorption energy distributions (AEDs).
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.