Generalized skew derivations on Lie ideals in prime rings

Q2 Mathematics
Giovanni Scudo, Ashutosh Pandey, Balchand Prajapati
{"title":"Generalized skew derivations on Lie ideals in prime rings","authors":"Giovanni Scudo,&nbsp;Ashutosh Pandey,&nbsp;Balchand Prajapati","doi":"10.1007/s11565-025-00581-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be prime ring with characteristic different from 2, <i>C</i> denotes the extended centroid, <i>L</i> a Lie ideal of <i>R</i> and <span>\\(Q_r\\)</span> the right Martindale quotient of the ring <i>R</i>. Let <span>\\(\\Delta _1\\)</span> and <span>\\(\\Delta _2\\)</span> represents two generalized skew derivations of <i>R</i> associated with <span>\\((\\psi ,l_1)\\)</span> and <span>\\((\\psi , l_2)\\)</span>, respectively, such that <span>\\(\\psi .l_1=l_1.\\psi \\)</span> and <span>\\(\\psi . l_2= l_2.\\psi \\)</span>. If, for every <span>\\(r \\in L\\)</span>, <span>\\(\\Delta _1^2(r)r=\\Delta _2(r^2)\\)</span>, then we characterize the maps <span>\\(\\Delta _1\\)</span> and <span>\\(\\Delta _2\\)</span>. As an application of this generalization, we proved that if <span>\\(\\Delta _1(\\tau ^2)=0\\)</span> for all <span>\\(\\tau \\in R\\)</span>, then <i>R</i> contains a non-zero central ideal.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00581-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be prime ring with characteristic different from 2, C denotes the extended centroid, L a Lie ideal of R and \(Q_r\) the right Martindale quotient of the ring R. Let \(\Delta _1\) and \(\Delta _2\) represents two generalized skew derivations of R associated with \((\psi ,l_1)\) and \((\psi , l_2)\), respectively, such that \(\psi .l_1=l_1.\psi \) and \(\psi . l_2= l_2.\psi \). If, for every \(r \in L\), \(\Delta _1^2(r)r=\Delta _2(r^2)\), then we characterize the maps \(\Delta _1\) and \(\Delta _2\). As an application of this generalization, we proved that if \(\Delta _1(\tau ^2)=0\) for all \(\tau \in R\), then R contains a non-zero central ideal.

素环上李理想的广义偏导
设R为特征不同于2的素环,C表示扩展质心,L表示R的Lie理想,\(Q_r\)表示环R的右Martindale商。设\(\Delta _1\)和\(\Delta _2\)分别表示R与\((\psi ,l_1)\)和\((\psi , l_2)\)相关的两个广义偏导,使得\(\psi .l_1=l_1.\psi \)和\(\psi . l_2= l_2.\psi \)。如果,对于每个\(r \in L\), \(\Delta _1^2(r)r=\Delta _2(r^2)\),那么我们描述映射\(\Delta _1\)和\(\Delta _2\)。作为这一推广的一个应用,我们证明了如果\(\Delta _1(\tau ^2)=0\)对于所有\(\tau \in R\),则R包含一个非零中心理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信