Design and characterization of allantoin-inducible expression systems in budding yeast

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Junyi Wang, Jiaxue Ma, Xueyi Luo, Shuo Wang, Xinning Cai, Jifeng Yuan
{"title":"Design and characterization of allantoin-inducible expression systems in budding yeast","authors":"Junyi Wang,&nbsp;Jiaxue Ma,&nbsp;Xueyi Luo,&nbsp;Shuo Wang,&nbsp;Xinning Cai,&nbsp;Jifeng Yuan","doi":"10.1186/s13068-025-02630-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Saccharomyces cerevisiae</i> has been extensively employed as a host for the production of various biochemicals and recombinant proteins. The expression systems employed in <i>S. cerevisiae</i> typically rely on constitutive or galactose-regulated promoters, and the limited repertoire of gene expression regulations imposes constraints on the productivity of microbial cell factories based on budding yeast.</p><h3>Results</h3><p>In this study, we designed and characterized a series of allantoin-inducible expression systems based on the endogenous allantoin catabolic system (DAL-related genes) in <i>S. cerevisiae</i>. We first characterized the expression profile of a set of DAL promoters induced by allantoin, and further combined with the galactose-inducible (GAL) system to create a highly responsive genetic switch that efficiently amplifies the output signals. The resulting allantoin–GAL system could give a ON/OFF ratio of 68.6, with 6.8-fold higher signal output over that of direct P<sub>DAL2</sub>-controlled gene expression. Additionally, when a centromeric plasmid was used for EGFP expression, the ON/OFF ratio was increased to &gt; 67.2, surpassing the EGFP expression levels driven by the DAL2 promoter. Subsequently, we successfully demonstrated that allantoin–GAL system can be used to effectively regulate carotenoid production and cell flocculation in <i>S. cerevisiae</i>.</p><h3>Conclusions</h3><p>In summary, we characterized several allantoin-inducible DAL promoters from budding yeast and further developed a layered allantoin–GAL system that utilizes the DAL2 promoter to regulate the galactose regulon in budding yeast. The resulting allantoin–GAL system could give an impressive ON/OFF ratio that surpassed the traditional P<sub>DAL2</sub>-controlled gene expression. It is anticipated that utilizing our allantoin-inducible system in budding yeast with allantoin as the alternative nitrogen source might favor the low-cost production of biochemicals and pharmaceuticals.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02630-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02630-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Saccharomyces cerevisiae has been extensively employed as a host for the production of various biochemicals and recombinant proteins. The expression systems employed in S. cerevisiae typically rely on constitutive or galactose-regulated promoters, and the limited repertoire of gene expression regulations imposes constraints on the productivity of microbial cell factories based on budding yeast.

Results

In this study, we designed and characterized a series of allantoin-inducible expression systems based on the endogenous allantoin catabolic system (DAL-related genes) in S. cerevisiae. We first characterized the expression profile of a set of DAL promoters induced by allantoin, and further combined with the galactose-inducible (GAL) system to create a highly responsive genetic switch that efficiently amplifies the output signals. The resulting allantoin–GAL system could give a ON/OFF ratio of 68.6, with 6.8-fold higher signal output over that of direct PDAL2-controlled gene expression. Additionally, when a centromeric plasmid was used for EGFP expression, the ON/OFF ratio was increased to > 67.2, surpassing the EGFP expression levels driven by the DAL2 promoter. Subsequently, we successfully demonstrated that allantoin–GAL system can be used to effectively regulate carotenoid production and cell flocculation in S. cerevisiae.

Conclusions

In summary, we characterized several allantoin-inducible DAL promoters from budding yeast and further developed a layered allantoin–GAL system that utilizes the DAL2 promoter to regulate the galactose regulon in budding yeast. The resulting allantoin–GAL system could give an impressive ON/OFF ratio that surpassed the traditional PDAL2-controlled gene expression. It is anticipated that utilizing our allantoin-inducible system in budding yeast with allantoin as the alternative nitrogen source might favor the low-cost production of biochemicals and pharmaceuticals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信