{"title":"Identifying the Intents Behind Website Visits by Employing Unsupervised Machine Learning Models","authors":"Judah Soobramoney, Retius Chifurira, Temesgen Zewotir, Knowledge Chinhamu","doi":"10.1007/s40745-024-00586-5","DOIUrl":null,"url":null,"abstract":"<div><p>With digitisation globally on the rise, corporates are compelled to better understand the usage of their websites. In doing so, corporates will be empowered to better understand consumers, and make necessary adjustments to ultimately improve the corporate’s stance in the competitive global landscape of this modern age. However, the online website visit data has proven to be highly complex, big in data volume, and highly transactional with users expressing unique behaviours. Thus, extracting insight can be a complex problem to solve. This study aimed to employ unsupervised machine learning models to identify the intentions behind the visits on the observed website. The data studied was sourced from the Google Analytics tracking tool that was deployed on a corporate informative website. The study employed a k-means, hierarchical and dbscan unsupervised machine learning models to understand the intents behind visitors on the studied website. All three models detected five major intents that were expressed within the observed data. The intents identified were labelled as “accidentals”, “drop-offs”, “engrossed”, “get-in-touch” and “seekers”. On the observed data, all three unsupervised machine learning methods have performed well. However, in the context of the study, which investigated the intents that drove online visits, the hierarchical clustering method yielded superior results by maintaining the best balance between cluster homogeneity (stronger silhouette coefficients) and cluster size.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"413 - 437"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-024-00586-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00586-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
With digitisation globally on the rise, corporates are compelled to better understand the usage of their websites. In doing so, corporates will be empowered to better understand consumers, and make necessary adjustments to ultimately improve the corporate’s stance in the competitive global landscape of this modern age. However, the online website visit data has proven to be highly complex, big in data volume, and highly transactional with users expressing unique behaviours. Thus, extracting insight can be a complex problem to solve. This study aimed to employ unsupervised machine learning models to identify the intentions behind the visits on the observed website. The data studied was sourced from the Google Analytics tracking tool that was deployed on a corporate informative website. The study employed a k-means, hierarchical and dbscan unsupervised machine learning models to understand the intents behind visitors on the studied website. All three models detected five major intents that were expressed within the observed data. The intents identified were labelled as “accidentals”, “drop-offs”, “engrossed”, “get-in-touch” and “seekers”. On the observed data, all three unsupervised machine learning methods have performed well. However, in the context of the study, which investigated the intents that drove online visits, the hierarchical clustering method yielded superior results by maintaining the best balance between cluster homogeneity (stronger silhouette coefficients) and cluster size.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.