A Hybrid Temporal Convolutional Network and Transformer Model for Accurate and Scalable Sales Forecasting

MD AL Rafi;Gourab Nicholas Rodrigues;MD Nazmul Hossain Mir;MD Shahriar Mahmud Bhuiyan;M. F. Mridha;MD Rashedul Islam;Yutaka Watanobe
{"title":"A Hybrid Temporal Convolutional Network and Transformer Model for Accurate and Scalable Sales Forecasting","authors":"MD AL Rafi;Gourab Nicholas Rodrigues;MD Nazmul Hossain Mir;MD Shahriar Mahmud Bhuiyan;M. F. Mridha;MD Rashedul Islam;Yutaka Watanobe","doi":"10.1109/OJCS.2025.3538579","DOIUrl":null,"url":null,"abstract":"Accurate product sales forecasting is critical for inventory management, pricing strategies, and supply chain optimization in the retail industry. This article proposes a novel deep learning architecture that integrates Temporal Convolutional Networks (TCNs) with Transformer-based attention mechanisms to capture both short-term and long-term dependencies in time-series sales data. Utilizing the Favorita Grocery Sales Forecasting dataset, our hybrid TCN Transformer model demonstrates superior performance over existing models by incorporating external factors such as holidays, promotions, oil prices, and transaction data. The model achieves state-of-the-art results with a Mean Absolute Error (MAE) of 2.01, Root Mean Squared Error (RMSE) of 2.81, and a Weighted Mean Absolute Percentage Error (wMAPE) of 4.22%, significantly outperforming other leading models such as LSTM, GRU, and TFT. Extensive cross-validation confirms the robustness of our model, achieving consistently high performance across multiple folds.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"380-391"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10870315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate product sales forecasting is critical for inventory management, pricing strategies, and supply chain optimization in the retail industry. This article proposes a novel deep learning architecture that integrates Temporal Convolutional Networks (TCNs) with Transformer-based attention mechanisms to capture both short-term and long-term dependencies in time-series sales data. Utilizing the Favorita Grocery Sales Forecasting dataset, our hybrid TCN Transformer model demonstrates superior performance over existing models by incorporating external factors such as holidays, promotions, oil prices, and transaction data. The model achieves state-of-the-art results with a Mean Absolute Error (MAE) of 2.01, Root Mean Squared Error (RMSE) of 2.81, and a Weighted Mean Absolute Percentage Error (wMAPE) of 4.22%, significantly outperforming other leading models such as LSTM, GRU, and TFT. Extensive cross-validation confirms the robustness of our model, achieving consistently high performance across multiple folds.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信