{"title":"SGANet: A Siamese Geometry-Aware Network for Remote Sensing Change Detection","authors":"Jiangwei Chen;Sijun Dong;Xiaoliang Meng","doi":"10.1109/JSTARS.2025.3539733","DOIUrl":null,"url":null,"abstract":"The significant progress in the fields of deep learning and computer vision has propelled the development of remote sensing change detection. However, we noticed that previous methods still rely on the single visual modality and cannot effectively utilize other prior information, such as elevation or depth maps. Therefore, this article presents a novel Siamese geometry-aware network (SGANet) intended for RGB-D remote sensing change detection. By incorporating both RGB data and geometry priors such as relative depth estimations derived from a monocular depth estimation model such as DepthAnythingV2, SGANet surpasses the limitations of traditional methods that primarily depend on visual data. The proposed network employs a shared siamese encoder architecture with a lightweight decoder head for efficient change map prediction. Within the encoder blocks, we integrated a local feature extraction block that excels at capturing fine-grained features and a global cross-attention block that focuses on contextual features between different modalities. Furthermore, we engineered a dual-path fusion structure that facilitates a seamless integration of vision and geometry features. Extensive experiments on the LEVIR-CD, WHU-CD, SYSU-CD, and S2Looking-CD datasets demonstrated that SGANet achieved substantial enhancements in F1-Score and intersection over union compared to benchmark methods that are in vogue. By integrating geometry priors and effective multimodal fusion mechanisms, SGANet promoted the development of geometry-aware change detection, further enhancing optimal performance.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"6232-6248"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884698","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884698/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The significant progress in the fields of deep learning and computer vision has propelled the development of remote sensing change detection. However, we noticed that previous methods still rely on the single visual modality and cannot effectively utilize other prior information, such as elevation or depth maps. Therefore, this article presents a novel Siamese geometry-aware network (SGANet) intended for RGB-D remote sensing change detection. By incorporating both RGB data and geometry priors such as relative depth estimations derived from a monocular depth estimation model such as DepthAnythingV2, SGANet surpasses the limitations of traditional methods that primarily depend on visual data. The proposed network employs a shared siamese encoder architecture with a lightweight decoder head for efficient change map prediction. Within the encoder blocks, we integrated a local feature extraction block that excels at capturing fine-grained features and a global cross-attention block that focuses on contextual features between different modalities. Furthermore, we engineered a dual-path fusion structure that facilitates a seamless integration of vision and geometry features. Extensive experiments on the LEVIR-CD, WHU-CD, SYSU-CD, and S2Looking-CD datasets demonstrated that SGANet achieved substantial enhancements in F1-Score and intersection over union compared to benchmark methods that are in vogue. By integrating geometry priors and effective multimodal fusion mechanisms, SGANet promoted the development of geometry-aware change detection, further enhancing optimal performance.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.