Security and Fairness in Multiparty Quantum Secret Sharing Protocol

Alessio Di Santo;Walter Tiberti;Dajana Cassioli
{"title":"Security and Fairness in Multiparty Quantum Secret Sharing Protocol","authors":"Alessio Di Santo;Walter Tiberti;Dajana Cassioli","doi":"10.1109/TQE.2025.3535823","DOIUrl":null,"url":null,"abstract":"Quantum secret sharing (QSS) is a cryptographic protocol that leverages quantum mechanics to distribute a secret among multiple parties. With respect to the classical counterpart, in QSS, the secret is encoded into quantum states and shared by a dealer such that only an authorized subsets of participants, i.e., the players, can reconstruct it. Several state-of-the-art studies aim to transpose classical secret sharing into the quantum realm, while maintaining their reliance on traditional network topologies (e.g., star, ring, and fully connected), and require that all the <inline-formula><tex-math>$n$</tex-math></inline-formula> players calculate the secret. These studies exploit the Greenberger–Horne–Zeilinger state, which is a type of maximally entangled quantum state involving three or more qubits. However, none of these works account for redundancy, enhanced security/privacy features, or authentication mechanisms able to fingerprint players. To address these gaps, in this article, we introduce a new concept of QSS, which leans on a generic distributed quantum network, based on a threshold scheme, where all the players collaborate also to the routing of quantum information among them. The dealer, by exploiting a custom flexible weighting system, takes advantage of a newly defined quantum Dijkstra algorithm to select the most suitable subset of <inline-formula><tex-math>$t$</tex-math></inline-formula> players, out of the entire set on <inline-formula><tex-math>$n$</tex-math></inline-formula> players, to involve in the computation. To fingerprint and authenticate users, CRYSTAL-Kyber primitives are adopted, while also protecting each player’s privacy by hiding their identities. We show the effectiveness and performance of the proposed protocol by testing it against the main classical and quantum attacks, thereby improving the state-of-the-art security measures.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10857623/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum secret sharing (QSS) is a cryptographic protocol that leverages quantum mechanics to distribute a secret among multiple parties. With respect to the classical counterpart, in QSS, the secret is encoded into quantum states and shared by a dealer such that only an authorized subsets of participants, i.e., the players, can reconstruct it. Several state-of-the-art studies aim to transpose classical secret sharing into the quantum realm, while maintaining their reliance on traditional network topologies (e.g., star, ring, and fully connected), and require that all the $n$ players calculate the secret. These studies exploit the Greenberger–Horne–Zeilinger state, which is a type of maximally entangled quantum state involving three or more qubits. However, none of these works account for redundancy, enhanced security/privacy features, or authentication mechanisms able to fingerprint players. To address these gaps, in this article, we introduce a new concept of QSS, which leans on a generic distributed quantum network, based on a threshold scheme, where all the players collaborate also to the routing of quantum information among them. The dealer, by exploiting a custom flexible weighting system, takes advantage of a newly defined quantum Dijkstra algorithm to select the most suitable subset of $t$ players, out of the entire set on $n$ players, to involve in the computation. To fingerprint and authenticate users, CRYSTAL-Kyber primitives are adopted, while also protecting each player’s privacy by hiding their identities. We show the effectiveness and performance of the proposed protocol by testing it against the main classical and quantum attacks, thereby improving the state-of-the-art security measures.
多方量子秘密共享协议的安全性与公平性
量子秘密共享(QSS)是一种利用量子力学在多方之间分发秘密的加密协议。相对于经典的对等体,在QSS中,秘密被编码成量子态并由经销商共享,这样只有参与者的授权子集(即玩家)才能重建它。一些最先进的研究旨在将经典的秘密共享转移到量子领域,同时保持对传统网络拓扑(例如,星型,环型和全连接)的依赖,并要求所有$n$参与者计算秘密。这些研究利用了greenberger - horn - zeilinger态,这是一种涉及三个或更多量子比特的最大纠缠量子态。然而,这些工作都没有考虑到冗余、增强的安全/隐私功能或能够指纹玩家的身份验证机制。为了解决这些差距,在本文中,我们引入了一个新的QSS概念,它依赖于一个基于阈值方案的通用分布式量子网络,其中所有参与者也协作以实现量子信息在它们之间的路由。发牌方利用自定义的灵活加权系统,利用新定义的量子Dijkstra算法,从$n$玩家的整个集合中选择$t$玩家中最合适的子集,以参与计算。为了指纹和认证用户,采用了CRYSTAL-Kyber原语,同时也通过隐藏他们的身份来保护每个玩家的隐私。我们通过对主要的经典攻击和量子攻击进行测试来展示所提出协议的有效性和性能,从而改进了最先进的安全措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信