Logarithmic mean approximation in improving entropy conservation in KEEP scheme with pressure equilibrium preservation property for compressible flows

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shigetaka Kawai, Soshi Kawai
{"title":"Logarithmic mean approximation in improving entropy conservation in KEEP scheme with pressure equilibrium preservation property for compressible flows","authors":"Shigetaka Kawai,&nbsp;Soshi Kawai","doi":"10.1016/j.jcp.2025.113897","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops non-dissipative and robust spatial discretizations in kinetic-energy and entropy preserving (KEEP) schemes by improving the entropy conservation property, while maintaining the pressure-equilibrium-preservation (PEP) property. A main focus of this study is the approximation of the logarithmic mean, involved in the entropy-conservative numerical fluxes in the mass and energy equations. To seek suitable approximations of the logarithmic mean with the KEEP and PEP properties, we first derive the PEP condition for general entropy-conservative numerical fluxes. Then, we evaluate the entropy conservation errors for different approximations of the logarithmic mean. The present theoretical analyses reveal that the use of the geometric mean improves the entropy conservation error better than the other means. Given this theoretical result, we derive an asymptotic expansion of the logarithmic mean based on the geometric mean, which yields a smaller entropy conservation error than the existing expansions based on the arithmetic mean at each truncation order. Numerical experiments for one-dimensional density wave advection, two-dimensional isentropic vortex, three-dimensional compressible inviscid Taylor–Green vortex, and stationary normal shock demonstrate the validity of the present theoretical analyses.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"530 ","pages":"Article 113897"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001809","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops non-dissipative and robust spatial discretizations in kinetic-energy and entropy preserving (KEEP) schemes by improving the entropy conservation property, while maintaining the pressure-equilibrium-preservation (PEP) property. A main focus of this study is the approximation of the logarithmic mean, involved in the entropy-conservative numerical fluxes in the mass and energy equations. To seek suitable approximations of the logarithmic mean with the KEEP and PEP properties, we first derive the PEP condition for general entropy-conservative numerical fluxes. Then, we evaluate the entropy conservation errors for different approximations of the logarithmic mean. The present theoretical analyses reveal that the use of the geometric mean improves the entropy conservation error better than the other means. Given this theoretical result, we derive an asymptotic expansion of the logarithmic mean based on the geometric mean, which yields a smaller entropy conservation error than the existing expansions based on the arithmetic mean at each truncation order. Numerical experiments for one-dimensional density wave advection, two-dimensional isentropic vortex, three-dimensional compressible inviscid Taylor–Green vortex, and stationary normal shock demonstrate the validity of the present theoretical analyses.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信