The corotational stability postulate: Positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity

IF 2.8 3区 工程技术 Q2 MECHANICS
Patrizio Neff , Nina J. Husemann , Aurélien S. Nguetcho Tchakoutio , Sergey N. Korobeynikov , Robert J. Martin
{"title":"The corotational stability postulate: Positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity","authors":"Patrizio Neff ,&nbsp;Nina J. Husemann ,&nbsp;Aurélien S. Nguetcho Tchakoutio ,&nbsp;Sergey N. Korobeynikov ,&nbsp;Robert J. Martin","doi":"10.1016/j.ijnonlinmec.2025.105033","DOIUrl":null,"url":null,"abstract":"<div><div>In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that <span><span><span>(0.1)</span><span><math><mrow><mrow><mo>〈</mo><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>∘</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac><mrow><mo>[</mo><mi>σ</mi><mo>]</mo></mrow><mo>,</mo><mi>D</mi><mo>〉</mo></mrow><mo>&gt;</mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><mi>D</mi><mo>∈</mo><mtext>Sym</mtext><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mspace></mspace><mo>,</mo></mrow></math></span></span></span>where <span><math><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>∘</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac></math></span> is <strong>any</strong> corotational stress rate, <span><math><mi>σ</mi></math></span> is the Cauchy stress and <span><math><mrow><mi>D</mi><mo>=</mo><mo>sym</mo><mi>L</mi></mrow></math></span> is the Eulerian rate of deformation tensor where <span><math><mrow><mi>L</mi><mo>=</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>̇</mo></mrow></mover><mspace></mspace><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mi>v</mi></mrow></math></span> is the spatial velocity gradient. For <span><math><mrow><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><mi>V</mi><mo>)</mo></mrow><mo>≔</mo><mi>σ</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> it is equivalent almost everywhere to the monotonicity (TSTS-M<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) <span><span><span>(0.2)</span><span><math><mrow><mrow><mo>〈</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></mrow><mo>&gt;</mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msup><mrow><mtext>Sym</mtext></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>,</mo><mspace></mspace><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mo>.</mo></mrow></math></span></span></span>For hyperelasticity, (CSP) is in general independent of convexity of the mapping <span><math><mrow><mi>F</mi><mo>↦</mo><mi>W</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>U</mi><mo>↦</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span>. Considering a family of diagonal, homogeneous deformations <span><math><mrow><mi>t</mi><mo>↦</mo><mi>F</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young’s modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress–stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"174 ","pages":"Article 105033"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000216","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that (0.1)DDt[σ],D>0DSym(3){0},where DDt is any corotational stress rate, σ is the Cauchy stress and D=symL is the Eulerian rate of deformation tensor where L=ḞF1=Dξv is the spatial velocity gradient. For σ̂(logV)σ(V) it is equivalent almost everywhere to the monotonicity (TSTS-M+) (0.2)σ̂(logV1)σ̂(logV2),logV1logV2>0V1,V2Sym++(3),V1V2.For hyperelasticity, (CSP) is in general independent of convexity of the mapping FW(F) or UŴ(U). Considering a family of diagonal, homogeneous deformations tF(t) one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young’s modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress–stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.
旋转稳定性假设:各向同性非线性弹性中对角均匀变形的正增量柯西应力模量
在各向同性非线性弹性中,旋转稳定性假设(CSP)是要求(0.1)< D°Dt[σ],D > >0∀D∈Sym(3)∈{0},其中D°Dt是任意旋转应力率,σ是柯西应力,D =symL是欧拉变形张量的速率,其中L=ḞF−1=Dξv是空间速度梯度。对于σ σ(logV)几乎处处等价于单调性(TSTS-M+) (0.2) < σ σ(logV1)−σ σ(logV2),logV1−logV2 > >0∀V1,V2∈Sym++(3),V1≠V2。对于超弹性,(CSP)一般与映射F∈W(F)或映射U∈Ŵ(U)的凸性无关。然而,对于一类对角均匀变形t∈F(t),我们可以证明(CSP)暗示了该变形族的正增量柯西应力模量,包括增量杨氏模量、增量等双轴模量、增量平面张力模量和增量体积模量。此外,(CSP)对于Baker-Ericksen不等式和张力-扩展不等式是充分的。此外,它还暗示了柯西应力-拉伸关系的局部可逆性。总之,这表明(CSP)是一个合理的非线性弹性本构稳定性假设,补充了材料的局部稳定性,即lh -椭圆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信