Patrizio Neff , Nina J. Husemann , Aurélien S. Nguetcho Tchakoutio , Sergey N. Korobeynikov , Robert J. Martin
{"title":"The corotational stability postulate: Positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity","authors":"Patrizio Neff , Nina J. Husemann , Aurélien S. Nguetcho Tchakoutio , Sergey N. Korobeynikov , Robert J. Martin","doi":"10.1016/j.ijnonlinmec.2025.105033","DOIUrl":null,"url":null,"abstract":"<div><div>In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that <span><span><span>(0.1)</span><span><math><mrow><mrow><mo>〈</mo><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>∘</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac><mrow><mo>[</mo><mi>σ</mi><mo>]</mo></mrow><mo>,</mo><mi>D</mi><mo>〉</mo></mrow><mo>></mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><mi>D</mi><mo>∈</mo><mtext>Sym</mtext><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mspace></mspace><mo>,</mo></mrow></math></span></span></span>where <span><math><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>∘</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac></math></span> is <strong>any</strong> corotational stress rate, <span><math><mi>σ</mi></math></span> is the Cauchy stress and <span><math><mrow><mi>D</mi><mo>=</mo><mo>sym</mo><mi>L</mi></mrow></math></span> is the Eulerian rate of deformation tensor where <span><math><mrow><mi>L</mi><mo>=</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>̇</mo></mrow></mover><mspace></mspace><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mi>v</mi></mrow></math></span> is the spatial velocity gradient. For <span><math><mrow><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><mi>V</mi><mo>)</mo></mrow><mo>≔</mo><mi>σ</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> it is equivalent almost everywhere to the monotonicity (TSTS-M<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>) <span><span><span>(0.2)</span><span><math><mrow><mrow><mo>〈</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mo>log</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></mrow><mo>></mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msup><mrow><mtext>Sym</mtext></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>,</mo><mspace></mspace><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mo>.</mo></mrow></math></span></span></span>For hyperelasticity, (CSP) is in general independent of convexity of the mapping <span><math><mrow><mi>F</mi><mo>↦</mo><mi>W</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>U</mi><mo>↦</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span>. Considering a family of diagonal, homogeneous deformations <span><math><mrow><mi>t</mi><mo>↦</mo><mi>F</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young’s modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress–stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"174 ","pages":"Article 105033"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000216","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that (0.1)where is any corotational stress rate, is the Cauchy stress and is the Eulerian rate of deformation tensor where is the spatial velocity gradient. For it is equivalent almost everywhere to the monotonicity (TSTS-M) (0.2)For hyperelasticity, (CSP) is in general independent of convexity of the mapping or . Considering a family of diagonal, homogeneous deformations one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young’s modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress–stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.