{"title":"XAInomaly: Explainable and interpretable Deep Contractive Autoencoder for O-RAN traffic anomaly detection","authors":"Osman Tugay Basaran, Falko Dressler","doi":"10.1016/j.comnet.2025.111145","DOIUrl":null,"url":null,"abstract":"<div><div>Generative Artificial Intelligence (AI) techniques have become integral part in advancing next generation wireless communication systems by enabling sophisticated data modeling and feature extraction for enhanced network performance. In the realm of open radio access networks (O-RAN), characterized by their disaggregated architecture and heterogeneous components from multiple vendors, the deployment of generative models offers significant advantages for network management such as traffic analysis, traffic forecasting and anomaly detection. However, the complex and dynamic nature of O-RAN introduces challenges that necessitate not only accurate detection mechanisms but also reduced complexity, scalability, and most importantly interpretability to facilitate effective network management. In this study, we introduce the XAInomaly framework, an explainable and interpretable Semi-supervised (SS) Deep Contractive Autoencoder (DeepCAE) design for anomaly detection in O-RAN. Our approach leverages the generative modeling capabilities of our SS-DeepCAE model to learn compressed, robust representations of normal network behavior, which captures essential features, enabling the identification of deviations indicative of anomalies. To address the black-box nature of deep learning models, we propose reactive Explainable AI (XAI) technique called fastshap-C, which is providing transparency into the model’s decision-making process and highlighting the features contributing to anomaly detection.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"261 ","pages":"Article 111145"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625001136","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Generative Artificial Intelligence (AI) techniques have become integral part in advancing next generation wireless communication systems by enabling sophisticated data modeling and feature extraction for enhanced network performance. In the realm of open radio access networks (O-RAN), characterized by their disaggregated architecture and heterogeneous components from multiple vendors, the deployment of generative models offers significant advantages for network management such as traffic analysis, traffic forecasting and anomaly detection. However, the complex and dynamic nature of O-RAN introduces challenges that necessitate not only accurate detection mechanisms but also reduced complexity, scalability, and most importantly interpretability to facilitate effective network management. In this study, we introduce the XAInomaly framework, an explainable and interpretable Semi-supervised (SS) Deep Contractive Autoencoder (DeepCAE) design for anomaly detection in O-RAN. Our approach leverages the generative modeling capabilities of our SS-DeepCAE model to learn compressed, robust representations of normal network behavior, which captures essential features, enabling the identification of deviations indicative of anomalies. To address the black-box nature of deep learning models, we propose reactive Explainable AI (XAI) technique called fastshap-C, which is providing transparency into the model’s decision-making process and highlighting the features contributing to anomaly detection.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.