Classification of geological borehole descriptions using a domain adapted large language model

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hossein Ghorbanfekr, Pieter Jan Kerstens, Katrijn Dirix
{"title":"Classification of geological borehole descriptions using a domain adapted large language model","authors":"Hossein Ghorbanfekr,&nbsp;Pieter Jan Kerstens,&nbsp;Katrijn Dirix","doi":"10.1016/j.acags.2025.100229","DOIUrl":null,"url":null,"abstract":"<div><div>Geological borehole descriptions contain detailed textual information about the composition of the subsurface. However, their unstructured format presents significant challenges for extracting relevant features into a structured format. This paper introduces GEOBERTje: a domain adapted large language model trained on geological borehole descriptions from Flanders (Belgium) in the Dutch language. This model effectively extracts relevant information from the borehole descriptions and represents it into a numeric vector space. Showcasing just one potential application of GEOBERTje, we finetune a classifier model on a limited number of manually labeled observations. This classifier categorizes borehole descriptions into a main, second and third lithology class. We show that our classifier outperforms a rule-based approach (by 30% on average), non-contextual Word2Vec embeddings combined with a random forest classifier (by 38% on average), and a prompt engineering method with large language models (i.e., GPT-4 (by 11% on average) and Gemma 2 (by 28% on average)). This study exemplifies how domain adapted large language models enhance the efficiency and accuracy of extracting information from complex, unstructured geological descriptions. This offers new opportunities for geological analysis and modeling using vast amounts of data.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100229"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Geological borehole descriptions contain detailed textual information about the composition of the subsurface. However, their unstructured format presents significant challenges for extracting relevant features into a structured format. This paper introduces GEOBERTje: a domain adapted large language model trained on geological borehole descriptions from Flanders (Belgium) in the Dutch language. This model effectively extracts relevant information from the borehole descriptions and represents it into a numeric vector space. Showcasing just one potential application of GEOBERTje, we finetune a classifier model on a limited number of manually labeled observations. This classifier categorizes borehole descriptions into a main, second and third lithology class. We show that our classifier outperforms a rule-based approach (by 30% on average), non-contextual Word2Vec embeddings combined with a random forest classifier (by 38% on average), and a prompt engineering method with large language models (i.e., GPT-4 (by 11% on average) and Gemma 2 (by 28% on average)). This study exemplifies how domain adapted large language models enhance the efficiency and accuracy of extracting information from complex, unstructured geological descriptions. This offers new opportunities for geological analysis and modeling using vast amounts of data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信