Zihang Wang , Shuai Li , Xiaofeng Zhou , Shijie Zhu
{"title":"An iterative conditional variable selection method for constraint-based time series causal discovery","authors":"Zihang Wang , Shuai Li , Xiaofeng Zhou , Shijie Zhu","doi":"10.1016/j.chemolab.2025.105361","DOIUrl":null,"url":null,"abstract":"<div><div>Time series causal discovery aims to identify cause-effect relationships among variables from time series data, providing valuable insights into complex real-world scenarios. However, existing constraint-based causal discovery methods face challenges such as limited detection power, stemming from issues like dimensionality explosion and uncertainty caused by indirect paths. To address these problems, we propose a novel iterative conditional variable selection method designed for lagged, linear, and nonlinear causal discovery in time series. (1) Firstly, we block indirect information while minimizing the dimensionality of the conditioning set. Specifically, our method selects the parent set of each target variable as the conditioning set, which includes only those variables involved in the indirect path. (2) Then, we refine the conditioning set by selecting a subset of the parent set for each target variable to focus on indirect causal relationships. (3) Finally, the iterative application of steps (1) and (2) progressively corrects the indirect paths, leading to a significant improvement in detection power. Experimental results on synthetic and public datasets, as well as for varying time lags, node counts, and a chemical fault diagnosis case, demonstrate that our method outperforms state-of-the-art (SOTA) approaches.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"260 ","pages":"Article 105361"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000462","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Time series causal discovery aims to identify cause-effect relationships among variables from time series data, providing valuable insights into complex real-world scenarios. However, existing constraint-based causal discovery methods face challenges such as limited detection power, stemming from issues like dimensionality explosion and uncertainty caused by indirect paths. To address these problems, we propose a novel iterative conditional variable selection method designed for lagged, linear, and nonlinear causal discovery in time series. (1) Firstly, we block indirect information while minimizing the dimensionality of the conditioning set. Specifically, our method selects the parent set of each target variable as the conditioning set, which includes only those variables involved in the indirect path. (2) Then, we refine the conditioning set by selecting a subset of the parent set for each target variable to focus on indirect causal relationships. (3) Finally, the iterative application of steps (1) and (2) progressively corrects the indirect paths, leading to a significant improvement in detection power. Experimental results on synthetic and public datasets, as well as for varying time lags, node counts, and a chemical fault diagnosis case, demonstrate that our method outperforms state-of-the-art (SOTA) approaches.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.