Ultrafast laser micro-texturing of joining surface combined with ultrasonic vibration-assisted friction stir joining to fabricate Zr-based metallic glass parts
Zimin Tang , Yongshan Lu , Feng Ding , Lijuan Zheng , Chengyong Wang
{"title":"Ultrafast laser micro-texturing of joining surface combined with ultrasonic vibration-assisted friction stir joining to fabricate Zr-based metallic glass parts","authors":"Zimin Tang , Yongshan Lu , Feng Ding , Lijuan Zheng , Chengyong Wang","doi":"10.1016/j.jmatprotec.2025.118790","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to fabricate Zr-based metallic glass (MG) parts directly through friction stir joining (FSJ) by addressing the poor machinability of Zr-based MGs. The joining mechanism, mechanical properties, and microstructure of FSJ joints were investigated to achieve high-strength joints. The result identified uneven temperature distribution at the joint interface as a critical factor for inadequate plastic deformation or viscous flow, affecting the joint strength. Therefore, a new strategy is proposed to regulate the interface temperature and material plastic deformation during Zr-based MG joining via ultrafast laser micro-texturing of the joining surface combined with ultrasonic vibration-assisted friction stir joining (UL-UVaFSJ). The results show that ultrasonic vibrations enhance longitudinal friction and energy transfer, promoting uniform temperature distribution with improved viscous flow. Additionally, ultrafast laser-fabricated micro-textures alter heat generation, reducing temperature unevenness at the source. These factors collectively yield a uniform temperature distribution at the joint interface, crucial for reliable joining. The factors also maintain the even plastic flow of Zr-based MGs in the supercooled liquid region (SCLR) for a critical duration, essential for successful joining. Transmission electron microscopy reveals true metallurgical joining with the proposed method. The joining strength of Zr-based MGs is 1.37 GPa, reaching 91.3 % of the as-cast material and enabling the successful fabrication of a high-strength, crystallization-free MG gear shaft. The findings are pivotal for large-scale MG part fabrication and will significantly promote their industrial application.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118790"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to fabricate Zr-based metallic glass (MG) parts directly through friction stir joining (FSJ) by addressing the poor machinability of Zr-based MGs. The joining mechanism, mechanical properties, and microstructure of FSJ joints were investigated to achieve high-strength joints. The result identified uneven temperature distribution at the joint interface as a critical factor for inadequate plastic deformation or viscous flow, affecting the joint strength. Therefore, a new strategy is proposed to regulate the interface temperature and material plastic deformation during Zr-based MG joining via ultrafast laser micro-texturing of the joining surface combined with ultrasonic vibration-assisted friction stir joining (UL-UVaFSJ). The results show that ultrasonic vibrations enhance longitudinal friction and energy transfer, promoting uniform temperature distribution with improved viscous flow. Additionally, ultrafast laser-fabricated micro-textures alter heat generation, reducing temperature unevenness at the source. These factors collectively yield a uniform temperature distribution at the joint interface, crucial for reliable joining. The factors also maintain the even plastic flow of Zr-based MGs in the supercooled liquid region (SCLR) for a critical duration, essential for successful joining. Transmission electron microscopy reveals true metallurgical joining with the proposed method. The joining strength of Zr-based MGs is 1.37 GPa, reaching 91.3 % of the as-cast material and enabling the successful fabrication of a high-strength, crystallization-free MG gear shaft. The findings are pivotal for large-scale MG part fabrication and will significantly promote their industrial application.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.