{"title":"Comparative analysis of amino acid auxotrophies and peptidase profiles in non-dysbiotic and dysbiotic small intestinal microbiomes","authors":"Svenja Starke , Danielle M.M. Harris , Amandine Paulay , Konrad Aden , Silvio Waschina","doi":"10.1016/j.csbj.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Small Intestinal Bacterial Overgrowth (SIBO) is linked to various diseases and has been associated with altered serum amino acid levels. However, the direct role of the gut microbiome in these changes remains unconfirmed. This study employs genome-scale metabolic modeling to predict amino acid auxotrophy and peptidase gene profiles in the small intestinal microbiomes of SIBO and non-SIBO subjects. Auxotrophy and peptidase gene profiles were further examined in the large intestinal microbiome under non-dysbiotic conditions to assess their similarity to the microbial SIBO profile. Our analysis revealed that the abundance of auxotrophic bacteria is higher in the microbiota of the small intestine than in the large intestine in non-dysbiotic controls. In patients with SIBO, the abundance of auxotrophies in the small intestine decreased compared to non-SIBO subjects. Peptidase gene profiles in non-dysbiotic individuals were distinct between small and large intestinal microbiomes, with fewer extracellular peptidase genes in small intestine microbiomes. In SIBO, extracellular peptidase genes increased compared to non-SIBO subjects. Further, there were more significant associations between the abundance of auxotrophies and peptidase genes in microbiomes of the small intestine compared to the large intestine. In conclusion, the auxotrophy and peptidase gene profiles of the small and large intestinal microbiomes were distinct. In SIBO, the small intestinal microbiome shifts towards a metabolic state resembling that of the large intestine, particularly in its increased abundance of extracellular peptidase genes. This highlights the potential of genome-scale metabolic modeling in identifying metabolic disruptions associated with SIBO, which could inform the development of targeted interventions.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 821-831"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000327","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small Intestinal Bacterial Overgrowth (SIBO) is linked to various diseases and has been associated with altered serum amino acid levels. However, the direct role of the gut microbiome in these changes remains unconfirmed. This study employs genome-scale metabolic modeling to predict amino acid auxotrophy and peptidase gene profiles in the small intestinal microbiomes of SIBO and non-SIBO subjects. Auxotrophy and peptidase gene profiles were further examined in the large intestinal microbiome under non-dysbiotic conditions to assess their similarity to the microbial SIBO profile. Our analysis revealed that the abundance of auxotrophic bacteria is higher in the microbiota of the small intestine than in the large intestine in non-dysbiotic controls. In patients with SIBO, the abundance of auxotrophies in the small intestine decreased compared to non-SIBO subjects. Peptidase gene profiles in non-dysbiotic individuals were distinct between small and large intestinal microbiomes, with fewer extracellular peptidase genes in small intestine microbiomes. In SIBO, extracellular peptidase genes increased compared to non-SIBO subjects. Further, there were more significant associations between the abundance of auxotrophies and peptidase genes in microbiomes of the small intestine compared to the large intestine. In conclusion, the auxotrophy and peptidase gene profiles of the small and large intestinal microbiomes were distinct. In SIBO, the small intestinal microbiome shifts towards a metabolic state resembling that of the large intestine, particularly in its increased abundance of extracellular peptidase genes. This highlights the potential of genome-scale metabolic modeling in identifying metabolic disruptions associated with SIBO, which could inform the development of targeted interventions.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology