Kalyan Tadepalli , Abhijit Das , Tanushree Meena , Sudipta Roy
{"title":"Bridging gaps in artificial intelligence adoption for maternal-fetal and obstetric care: Unveiling transformative capabilities and challenges","authors":"Kalyan Tadepalli , Abhijit Das , Tanushree Meena , Sudipta Roy","doi":"10.1016/j.cmpb.2025.108682","DOIUrl":null,"url":null,"abstract":"<div><div>Purpose: This review aims to comprehensively explore the application of Artificial Intelligence (AI) to an area that has not been traditionally explored in depth: the continuum of maternal-fetal health. In doing so, the intent was to examine this physiologically continuous spectrum of mother and child health, as well as to highlight potential pitfalls, and suggest solutions for the same. Method: A systematic search identified studies employing AI techniques for prediction, diagnosis, and decision support employing various modalities like imaging, electrophysiological signals and electronic health records in the domain of obstetrics and fetal health. In the selected articles then, AI applications in fetal morphology, gestational age assessment, congenital defect detection, fetal monitoring, placental analysis, and maternal physiological monitoring were critically examined both from the perspective of the domain and artificial intelligence. Result: AI-driven solutions demonstrate promising capabilities in medical diagnostics and risk prediction, offering automation, improved accuracy, and the potential for personalized medicine. However, challenges regarding data availability, algorithmic transparency, and ethical considerations must be overcome to ensure responsible and effective clinical implementation. These challenges must be urgently addressed to ensure a domain as critical to public health as obstetrics and fetal health, is able to fully benefit from the gigantic strides made in the field of artificial intelligence. Conclusion: Open access to relevant datasets is crucial for equitable progress in this critical public health domain. Integrating responsible and explainable AI, while addressing ethical considerations, is essential to maximize the public health benefits of AI-driven solutions in maternal-fetal care.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"263 ","pages":"Article 108682"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000999","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This review aims to comprehensively explore the application of Artificial Intelligence (AI) to an area that has not been traditionally explored in depth: the continuum of maternal-fetal health. In doing so, the intent was to examine this physiologically continuous spectrum of mother and child health, as well as to highlight potential pitfalls, and suggest solutions for the same. Method: A systematic search identified studies employing AI techniques for prediction, diagnosis, and decision support employing various modalities like imaging, electrophysiological signals and electronic health records in the domain of obstetrics and fetal health. In the selected articles then, AI applications in fetal morphology, gestational age assessment, congenital defect detection, fetal monitoring, placental analysis, and maternal physiological monitoring were critically examined both from the perspective of the domain and artificial intelligence. Result: AI-driven solutions demonstrate promising capabilities in medical diagnostics and risk prediction, offering automation, improved accuracy, and the potential for personalized medicine. However, challenges regarding data availability, algorithmic transparency, and ethical considerations must be overcome to ensure responsible and effective clinical implementation. These challenges must be urgently addressed to ensure a domain as critical to public health as obstetrics and fetal health, is able to fully benefit from the gigantic strides made in the field of artificial intelligence. Conclusion: Open access to relevant datasets is crucial for equitable progress in this critical public health domain. Integrating responsible and explainable AI, while addressing ethical considerations, is essential to maximize the public health benefits of AI-driven solutions in maternal-fetal care.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.