{"title":"Advancing white balance correction through deep feature statistics and feature distribution matching","authors":"Furkan Kınlı , Barış Özcan , Furkan Kıraç","doi":"10.1016/j.jvcir.2025.104412","DOIUrl":null,"url":null,"abstract":"<div><div>Auto-white balance (AWB) correction is a crucial process in digital imaging, ensuring accurate and consistent color correction across varying lighting conditions. This study presents an innovative AWB correction method that conceptualizes lighting conditions as the style factor, allowing for more adaptable and precise color correction. Previous studies predominantly relied on Gaussian distribution assumptions for feature distribution alignment, which can limit the ability to fully exploit the style information as a modifying factor. To address this limitation, we propose a U-shaped Transformer-based architecture, where the learning objective of style factor enforces matching deep feature statistics using the Exact Feature Distribution Matching algorithm. Our proposed method consistently outperforms existing AWB correction techniques, as evidenced by both extensive quantitative and qualitative analyses conducted on the Cube+ and a synthetic mixed-illuminant dataset. Furthermore, a systematic component-wise analysis provides deeper insights into the contributions of each element, further validating the robustness of the proposed approach.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"108 ","pages":"Article 104412"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000264","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Auto-white balance (AWB) correction is a crucial process in digital imaging, ensuring accurate and consistent color correction across varying lighting conditions. This study presents an innovative AWB correction method that conceptualizes lighting conditions as the style factor, allowing for more adaptable and precise color correction. Previous studies predominantly relied on Gaussian distribution assumptions for feature distribution alignment, which can limit the ability to fully exploit the style information as a modifying factor. To address this limitation, we propose a U-shaped Transformer-based architecture, where the learning objective of style factor enforces matching deep feature statistics using the Exact Feature Distribution Matching algorithm. Our proposed method consistently outperforms existing AWB correction techniques, as evidenced by both extensive quantitative and qualitative analyses conducted on the Cube+ and a synthetic mixed-illuminant dataset. Furthermore, a systematic component-wise analysis provides deeper insights into the contributions of each element, further validating the robustness of the proposed approach.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.