Ameer Tamoor Khan , Signe Marie Jensen , Abdul Rehman Khan
{"title":"Advancing precision agriculture: A comparative analysis of YOLOv8 for multi-class weed detection in cotton cultivation","authors":"Ameer Tamoor Khan , Signe Marie Jensen , Abdul Rehman Khan","doi":"10.1016/j.aiia.2025.01.013","DOIUrl":null,"url":null,"abstract":"<div><div>Effective weed management plays a critical role in enhancing the productivity and sustainability of cotton cultivation. The rapid emergence of herbicide-resistant weeds has underscored the need for innovative solutions to address the challenges associated with precise weed detection. This paper investigates the potential of YOLOv8, the latest advancement in the YOLO family of object detectors, for multi-class weed detection in U.S. cotton fields. Leveraging the CottonWeedDet12 dataset, which includes diverse weed species captured under varying environmental conditions, this study provides a comprehensive evaluation of YOLOv8's performance. A comparative analysis with earlier YOLO variants reveals substantial improvements in detection accuracy, as evidenced by higher mean Average Precision (mAP) scores. These findings highlight YOLOv8's superior capability to generalize across complex field scenarios, making it a promising candidate for real-time applications in precision agriculture. The enhanced architecture of YOLOv8, featuring anchor-free detection, an advanced Feature Pyramid Network (FPN), and an optimized loss function, enables accurate detection even under challenging conditions. This research emphasizes the importance of machine vision technologies in modern agriculture, particularly for minimizing herbicide reliance and promoting sustainable farming practices. The results not only validate YOLOv8's efficacy in multi-class weed detection but also pave the way for its integration into autonomous agricultural systems, thereby contributing to the broader goals of precision agriculture and ecological sustainability.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 182-191"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective weed management plays a critical role in enhancing the productivity and sustainability of cotton cultivation. The rapid emergence of herbicide-resistant weeds has underscored the need for innovative solutions to address the challenges associated with precise weed detection. This paper investigates the potential of YOLOv8, the latest advancement in the YOLO family of object detectors, for multi-class weed detection in U.S. cotton fields. Leveraging the CottonWeedDet12 dataset, which includes diverse weed species captured under varying environmental conditions, this study provides a comprehensive evaluation of YOLOv8's performance. A comparative analysis with earlier YOLO variants reveals substantial improvements in detection accuracy, as evidenced by higher mean Average Precision (mAP) scores. These findings highlight YOLOv8's superior capability to generalize across complex field scenarios, making it a promising candidate for real-time applications in precision agriculture. The enhanced architecture of YOLOv8, featuring anchor-free detection, an advanced Feature Pyramid Network (FPN), and an optimized loss function, enables accurate detection even under challenging conditions. This research emphasizes the importance of machine vision technologies in modern agriculture, particularly for minimizing herbicide reliance and promoting sustainable farming practices. The results not only validate YOLOv8's efficacy in multi-class weed detection but also pave the way for its integration into autonomous agricultural systems, thereby contributing to the broader goals of precision agriculture and ecological sustainability.