Deep learning based medical image segmentation for encryption with copyright protection through data hiding

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Monu Singh , Kedar Nath Singh , Amrita Mohan , Amit Kumar Singh , Huiyu Zhou
{"title":"Deep learning based medical image segmentation for encryption with copyright protection through data hiding","authors":"Monu Singh ,&nbsp;Kedar Nath Singh ,&nbsp;Amrita Mohan ,&nbsp;Amit Kumar Singh ,&nbsp;Huiyu Zhou","doi":"10.1016/j.compeleceng.2025.110202","DOIUrl":null,"url":null,"abstract":"<div><div>The prevention of medical information leakage has gained significant attention in recent times. As a result, numerous image encryption schemes are gaining prominence in protecting the privacy of original images. However, third-party users can easily compromise and access encrypted data after decryption. Therefore, it is imperative to develop encryption systems with enhanced confidentiality to address this issue. To tackle these problems, 3D-chaos-based encryption combined with copyright protection is proposed. This achieves high security at a low time cost. The method first segments the most significant information, i.e. the region of interest (ROI) part of the medical image, through the recent deep learning-based segmentation, i.e., you only look once (YOLO) version 8, for image encryption. The 3D-chaos-based encryption encodes only the ROI part, making it well-suited for secure healthcare with a low time cost. Finally, the hash of the ROI and the MAC address of the sender system is embedded into the non-region of interest (NROI) part of the image, making it effective against copyright violation, high bandwidth and storage costs. The results of extensive experiments on COVID-19 and COCO2017 datasets indicate that the method is highly secure, cost-effective and resistant to brute-force attacks. Given the advantages of encryption and data hiding, the proposed method could be an apt choice for medical data transmission and protection against any brute-force, statistical or differential attacks.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110202"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625001454","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The prevention of medical information leakage has gained significant attention in recent times. As a result, numerous image encryption schemes are gaining prominence in protecting the privacy of original images. However, third-party users can easily compromise and access encrypted data after decryption. Therefore, it is imperative to develop encryption systems with enhanced confidentiality to address this issue. To tackle these problems, 3D-chaos-based encryption combined with copyright protection is proposed. This achieves high security at a low time cost. The method first segments the most significant information, i.e. the region of interest (ROI) part of the medical image, through the recent deep learning-based segmentation, i.e., you only look once (YOLO) version 8, for image encryption. The 3D-chaos-based encryption encodes only the ROI part, making it well-suited for secure healthcare with a low time cost. Finally, the hash of the ROI and the MAC address of the sender system is embedded into the non-region of interest (NROI) part of the image, making it effective against copyright violation, high bandwidth and storage costs. The results of extensive experiments on COVID-19 and COCO2017 datasets indicate that the method is highly secure, cost-effective and resistant to brute-force attacks. Given the advantages of encryption and data hiding, the proposed method could be an apt choice for medical data transmission and protection against any brute-force, statistical or differential attacks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信