Evaluating deep learning auto-contouring for lung radiation therapy: A review of accuracy, variability, efficiency and dose, in target volumes and organs at risk

IF 3.4 Q2 ONCOLOGY
Keeva Moran, Claire Poole, Sarah Barrett
{"title":"Evaluating deep learning auto-contouring for lung radiation therapy: A review of accuracy, variability, efficiency and dose, in target volumes and organs at risk","authors":"Keeva Moran,&nbsp;Claire Poole,&nbsp;Sarah Barrett","doi":"10.1016/j.phro.2025.100736","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Delineation of target volumes (TVs) and organs at risk (OARs) is a resource intensive process in lung radiation therapy and, despite the introduction of some auto-contouring, inter-observer variability remains a challenge. Deep learning algorithms may prove an efficient alternative and this review aims to map the evidence base on the use of deep learning algorithms for TV and OAR delineation in the radiation therapy planning process for lung cancer patients.</div></div><div><h3>Materials and methods</h3><div>A literature search identified studies relating to deep learning. Manual contouring and deep learning auto-contours were evaluated against one another for accuracy, inter-observer variability, contouring time and dose-volume effects. A total of 40 studies were included for review.</div></div><div><h3>Results</h3><div>Thirty nine out of 40 studies investigated the accuracy of deep learning auto-contours and determined that they were of a comparable accuracy to manual contours. Inter-observer variability outcomes were heterogeneous in the seven relevant studies identified. Twenty-four studies analysed the time saving associated with deep learning auto-contours and reported a significant time reduction in comparison to manual contours. The eight studies that conducted a dose-volume metric evaluation on deep learning auto-contours identified negligible effect on treatment plans.</div></div><div><h3>Conclusion</h3><div>The accuracy and time-saving capacity of deep learning auto-contours in comparison to manual contours has been extensively studied. However, additional research is required in the areas of inter-observer variability and dose-volume metric evaluation to further substantiate its clinical use.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100736"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Delineation of target volumes (TVs) and organs at risk (OARs) is a resource intensive process in lung radiation therapy and, despite the introduction of some auto-contouring, inter-observer variability remains a challenge. Deep learning algorithms may prove an efficient alternative and this review aims to map the evidence base on the use of deep learning algorithms for TV and OAR delineation in the radiation therapy planning process for lung cancer patients.

Materials and methods

A literature search identified studies relating to deep learning. Manual contouring and deep learning auto-contours were evaluated against one another for accuracy, inter-observer variability, contouring time and dose-volume effects. A total of 40 studies were included for review.

Results

Thirty nine out of 40 studies investigated the accuracy of deep learning auto-contours and determined that they were of a comparable accuracy to manual contours. Inter-observer variability outcomes were heterogeneous in the seven relevant studies identified. Twenty-four studies analysed the time saving associated with deep learning auto-contours and reported a significant time reduction in comparison to manual contours. The eight studies that conducted a dose-volume metric evaluation on deep learning auto-contours identified negligible effect on treatment plans.

Conclusion

The accuracy and time-saving capacity of deep learning auto-contours in comparison to manual contours has been extensively studied. However, additional research is required in the areas of inter-observer variability and dose-volume metric evaluation to further substantiate its clinical use.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信