Shiva Kumar Gaddam , Sundararajan Natarajan , Anand K. Kanjarla
{"title":"Octree-based scaled boundary finite element approach for polycrystal RVEs: A comparison with traditional FE and FFT methods","authors":"Shiva Kumar Gaddam , Sundararajan Natarajan , Anand K. Kanjarla","doi":"10.1016/j.cma.2025.117864","DOIUrl":null,"url":null,"abstract":"<div><div>Finite Element Method (FEM) is one of the most widely used numerical techniques for solving partial differential equations. Despite its popularity, FEM faces challenges such as automatic mesh generation, handling stress singularities, and adaptive meshing. The recently developed Scaled Boundary Finite Element Method (SBFEM) overcomes these challenges by utilizing polyhedral elements, such as octree elements. SBFEM, combined with octree meshes, offer significant advantages over FEM, including rapid mesh transition, automatic mesh generation, adaptive meshing, and enhanced computational efficiency. Octree-based SBFEM has been successfully implemented and tested in various applications, such as homogenization, elastoplasticity, and adaptive phase-field fracture. However, its application to polycrystal representative volume elements (RVEs) remains unexplored. In this work, we implemented octree-based SBFEM for polycrystal RVEs and evaluated its performance for elasticity. A detailed algorithm is provided to generate balanced periodic octree meshes for polycrystal RVEs. The homogenized response and local stress fields are compared with those obtained from FEM and fast Fourier transforms (FFT). The results demonstrate that SBFEM closely matches with FEM and FFT while offering the added advantage of computational efficiency over FEM.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"438 ","pages":"Article 117864"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001367","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Finite Element Method (FEM) is one of the most widely used numerical techniques for solving partial differential equations. Despite its popularity, FEM faces challenges such as automatic mesh generation, handling stress singularities, and adaptive meshing. The recently developed Scaled Boundary Finite Element Method (SBFEM) overcomes these challenges by utilizing polyhedral elements, such as octree elements. SBFEM, combined with octree meshes, offer significant advantages over FEM, including rapid mesh transition, automatic mesh generation, adaptive meshing, and enhanced computational efficiency. Octree-based SBFEM has been successfully implemented and tested in various applications, such as homogenization, elastoplasticity, and adaptive phase-field fracture. However, its application to polycrystal representative volume elements (RVEs) remains unexplored. In this work, we implemented octree-based SBFEM for polycrystal RVEs and evaluated its performance for elasticity. A detailed algorithm is provided to generate balanced periodic octree meshes for polycrystal RVEs. The homogenized response and local stress fields are compared with those obtained from FEM and fast Fourier transforms (FFT). The results demonstrate that SBFEM closely matches with FEM and FFT while offering the added advantage of computational efficiency over FEM.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.