A robust and efficient rate-independent crystal plasticity model based on successive one-dimensional solution steps

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
B. Nijhuis, E.S. Perdahcıoğlu, A.H. van den Boogaard
{"title":"A robust and efficient rate-independent crystal plasticity model based on successive one-dimensional solution steps","authors":"B. Nijhuis,&nbsp;E.S. Perdahcıoğlu,&nbsp;A.H. van den Boogaard","doi":"10.1016/j.cma.2025.117815","DOIUrl":null,"url":null,"abstract":"<div><div>An efficient stress update algorithm for rate-independent crystal plasticity is presented. A series of successive one-dimensional solution (SODS) steps traces the hypersurfaces describing the slip state for which the yield criteria of individual slip systems are fulfilled to identify the intersection of all hypersurfaces. This provides both the active set and all slip components without requiring iterative active set search procedures or inducing spurious slip on inactive systems. The basic SODS algorithm is accelerated by tracking the evolution of the active set. A fast Newton–Raphson procedure enables to obtain the solution for an unchanging active set directly, while line search and extrapolation procedures direct the SODS steps towards the solution faster. A regularised tangent modulus is proposed that eliminates stiffness jumps upon changes in active set to improve the convergence behaviour of outer (equilibrium) iterations conducted with the algorithm. The resulting stress update algorithm is highly stable and efficient, making it an attractive candidate for use in large-scale crystal plasticity FE simulations and homogenisation algorithms.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"438 ","pages":"Article 117815"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000878","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient stress update algorithm for rate-independent crystal plasticity is presented. A series of successive one-dimensional solution (SODS) steps traces the hypersurfaces describing the slip state for which the yield criteria of individual slip systems are fulfilled to identify the intersection of all hypersurfaces. This provides both the active set and all slip components without requiring iterative active set search procedures or inducing spurious slip on inactive systems. The basic SODS algorithm is accelerated by tracking the evolution of the active set. A fast Newton–Raphson procedure enables to obtain the solution for an unchanging active set directly, while line search and extrapolation procedures direct the SODS steps towards the solution faster. A regularised tangent modulus is proposed that eliminates stiffness jumps upon changes in active set to improve the convergence behaviour of outer (equilibrium) iterations conducted with the algorithm. The resulting stress update algorithm is highly stable and efficient, making it an attractive candidate for use in large-scale crystal plasticity FE simulations and homogenisation algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信