An enhanced light weight face liveness detection method using deep convolutional neural network

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-02-17 DOI:10.1016/j.mex.2025.103229
Swapnil R. Shinde , Anupkumar M. Bongale , Deepak Dharrao , Sudeep D. Thepade
{"title":"An enhanced light weight face liveness detection method using deep convolutional neural network","authors":"Swapnil R. Shinde ,&nbsp;Anupkumar M. Bongale ,&nbsp;Deepak Dharrao ,&nbsp;Sudeep D. Thepade","doi":"10.1016/j.mex.2025.103229","DOIUrl":null,"url":null,"abstract":"<div><div>Authentication plays a pivotal role in contemporary security frameworks, with various methods utilized including passwords, hardware tokens, and biometrics. Biometric authentication and face recognition hold significant application potential, albeit susceptible to forgery, termed as face spoofing attacks. These attacks, encompassing 2D and 3D modalities, pose challenges through fake photos, warped images, video displays, and 3D masks. The existing counter measures are attack specific and use complex architecture adding to the computational cost. The deep transfer learning models such as AlexNet, ResNet, VGG, and Inception V3 can be used, but they are computationally expensive. This article proposes LwFLNeT, a lightweight deep CNN method that leverages parallel dropout layers to prevent over fitting and achieves excellent performance on 2D and 3D face spoofing datasets. The proposed methods is validated through the Cross-dataset train test evaluation. The methodology proposed in the article has the following key contributions:<ul><li><span>•</span><span><div>Design of Light Weight Dual Stream CNN architecture with a parallel dropout layer to minimize over fitting issue.</div></span></li><li><span>•</span><span><div>Design of Generalized and Robust deep CNN architecture that detects both 2D and 3D attacks with higher efficiency compared to existing methodology.</div></span></li><li><span>•</span><span><div>Method validation done with State-of-the-Art methods using the standard performance metrics for face spoofing attack detection.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103229"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Authentication plays a pivotal role in contemporary security frameworks, with various methods utilized including passwords, hardware tokens, and biometrics. Biometric authentication and face recognition hold significant application potential, albeit susceptible to forgery, termed as face spoofing attacks. These attacks, encompassing 2D and 3D modalities, pose challenges through fake photos, warped images, video displays, and 3D masks. The existing counter measures are attack specific and use complex architecture adding to the computational cost. The deep transfer learning models such as AlexNet, ResNet, VGG, and Inception V3 can be used, but they are computationally expensive. This article proposes LwFLNeT, a lightweight deep CNN method that leverages parallel dropout layers to prevent over fitting and achieves excellent performance on 2D and 3D face spoofing datasets. The proposed methods is validated through the Cross-dataset train test evaluation. The methodology proposed in the article has the following key contributions:
  • Design of Light Weight Dual Stream CNN architecture with a parallel dropout layer to minimize over fitting issue.
  • Design of Generalized and Robust deep CNN architecture that detects both 2D and 3D attacks with higher efficiency compared to existing methodology.
  • Method validation done with State-of-the-Art methods using the standard performance metrics for face spoofing attack detection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信