Suppression of the LKB1-AMPK-SLC7A11-GSH signaling pathway sensitizes NSCLC to albumin-bound paclitaxel via oxidative stress

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dade Rong , Liangliang Gao , Yiguan Chen , Xiang-Zheng Gao , Mingzhu Tang , Haimei Tang , Yuan Gao , Guang Lu , Zhi-Qiang Ling , Han-Ming Shen
{"title":"Suppression of the LKB1-AMPK-SLC7A11-GSH signaling pathway sensitizes NSCLC to albumin-bound paclitaxel via oxidative stress","authors":"Dade Rong ,&nbsp;Liangliang Gao ,&nbsp;Yiguan Chen ,&nbsp;Xiang-Zheng Gao ,&nbsp;Mingzhu Tang ,&nbsp;Haimei Tang ,&nbsp;Yuan Gao ,&nbsp;Guang Lu ,&nbsp;Zhi-Qiang Ling ,&nbsp;Han-Ming Shen","doi":"10.1016/j.redox.2025.103567","DOIUrl":null,"url":null,"abstract":"<div><div>Albumin-bound paclitaxel (nab-PTX) is an important chemotherapeutic drug used for the treatment of advanced and metastatic non-small cell lung cancer (NSCLC). One critical issue in its clinical application is the development of resistance; thus, a deeper understanding of the mechanisms underlying the primary resistance to nab-PTX is expected to help to develop effective therapeutic strategies to overcome resistance. In this study, we made an unexpected discovery that NSCLC with wild-type (WT) Liver kinase B1 (LKB1), an important tumor suppressor and upstream kinase of AMP-activated protein kinase (AMPK), is more resistant to nab-PTX than NSCLC with mutant <em>LKB1</em>. Mechanistically, LKB1 status does not alter the intracellular concentration of nab-PTX or affect its canonical pharmacological action in promoting microtubule polymerization. Instead, we found that LKB1 mediates AMPK activation, leading to increased expression of SLC7A11, a key amino acid transporter and intracellular level of glutathione (GSH), which then attenuates the production of reactive oxygen species (ROS) and apoptotic cell death induced by nab-PTX. On the other hand, genetic or pharmacological inhibition of AMPK in <em>LKB1</em>-WT NSCLC reduces the expression of SLC7A11 and intracellular GSH, increases ROS level, and eventually promotes the apoptotic cell death induced by nab-PTX <em>in vitro</em>. Consistently, the combination of nab-PTX with an AMPK inhibitor exhibits a greater therapeutic efficacy in <em>LKB</em>1-WT NSCLC using xenograft models <em>in vivo</em>. Taken together, our data reveal a novel role of LKB1-AMPK-SLC7A11-GSH signaling pathway in the primary resistance to nab-PTX, and provide a therapeutic strategy for the treatment of <em>LKB1</em>-WT NSCLC by targeting the LKB1-AMPK-SLC7A11-GSH pathway.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103567"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000801","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Albumin-bound paclitaxel (nab-PTX) is an important chemotherapeutic drug used for the treatment of advanced and metastatic non-small cell lung cancer (NSCLC). One critical issue in its clinical application is the development of resistance; thus, a deeper understanding of the mechanisms underlying the primary resistance to nab-PTX is expected to help to develop effective therapeutic strategies to overcome resistance. In this study, we made an unexpected discovery that NSCLC with wild-type (WT) Liver kinase B1 (LKB1), an important tumor suppressor and upstream kinase of AMP-activated protein kinase (AMPK), is more resistant to nab-PTX than NSCLC with mutant LKB1. Mechanistically, LKB1 status does not alter the intracellular concentration of nab-PTX or affect its canonical pharmacological action in promoting microtubule polymerization. Instead, we found that LKB1 mediates AMPK activation, leading to increased expression of SLC7A11, a key amino acid transporter and intracellular level of glutathione (GSH), which then attenuates the production of reactive oxygen species (ROS) and apoptotic cell death induced by nab-PTX. On the other hand, genetic or pharmacological inhibition of AMPK in LKB1-WT NSCLC reduces the expression of SLC7A11 and intracellular GSH, increases ROS level, and eventually promotes the apoptotic cell death induced by nab-PTX in vitro. Consistently, the combination of nab-PTX with an AMPK inhibitor exhibits a greater therapeutic efficacy in LKB1-WT NSCLC using xenograft models in vivo. Taken together, our data reveal a novel role of LKB1-AMPK-SLC7A11-GSH signaling pathway in the primary resistance to nab-PTX, and provide a therapeutic strategy for the treatment of LKB1-WT NSCLC by targeting the LKB1-AMPK-SLC7A11-GSH pathway.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信