A novel rotation and scale-invariant deep learning framework leveraging conical transformers for precise differentiation between meningioma and solitary fibrous tumor
Mohamed T. Azam , Hossam Magdy Balaha , Akshitkumar Mistry , Khadiga M. Ali , Bret C. Mobley , Nalin Leelatian , Sanjay Bhatia , Murat Gokden , Norman Lehman , Mohammed Ghazal , Ayman El-Baz , Dibson D. Gondim
{"title":"A novel rotation and scale-invariant deep learning framework leveraging conical transformers for precise differentiation between meningioma and solitary fibrous tumor","authors":"Mohamed T. Azam , Hossam Magdy Balaha , Akshitkumar Mistry , Khadiga M. Ali , Bret C. Mobley , Nalin Leelatian , Sanjay Bhatia , Murat Gokden , Norman Lehman , Mohammed Ghazal , Ayman El-Baz , Dibson D. Gondim","doi":"10.1016/j.jpi.2025.100422","DOIUrl":null,"url":null,"abstract":"<div><div>Meningiomas, the most prevalent tumors of the central nervous system, can have overlapping histopathological features with solitary fibrous tumors (SFT), presenting a significant diagnostic challenge. Accurate differentiation between these two diagnoses is crucial for optimal medical management. Currently, immunohistochemistry and molecular techniques are the methods of choice for distinguishing between them; however, these techniques are expensive and not universally available. In this article, we propose a rotational and scale-invariant deep learning framework to enable accurate discrimination between these two tumor types. The proposed framework employs a novel architecture of conical transformers to capture both global and local imaging markers from whole-slide images, accommodating variations across different magnification scales. A weighted majority voting schema is utilized to combine individual scale decisions, ultimately producing a complementary and more accurate diagnostic outcome. A dataset comprising 92 patients (46 with meningioma and 46 with SFT) was used for evaluation. The experimental results demonstrate robust performance across different validation methods. In train-test evaluation, the model achieved 92.27% accuracy, 87.77% sensitivity, 97.55% specificity, and 92.46% F1-score. Performance further improved in 4-fold cross-validation, achieving 94.68% accuracy, 96.05% sensitivity, 93.11% specificity, and 95.07% F1-score. These findings highlight the potential of AI-based diagnostic approaches for precise differentiation between meningioma and SFT, paving the way for innovative diagnostic tools in pathology.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"17 ","pages":"Article 100422"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Meningiomas, the most prevalent tumors of the central nervous system, can have overlapping histopathological features with solitary fibrous tumors (SFT), presenting a significant diagnostic challenge. Accurate differentiation between these two diagnoses is crucial for optimal medical management. Currently, immunohistochemistry and molecular techniques are the methods of choice for distinguishing between them; however, these techniques are expensive and not universally available. In this article, we propose a rotational and scale-invariant deep learning framework to enable accurate discrimination between these two tumor types. The proposed framework employs a novel architecture of conical transformers to capture both global and local imaging markers from whole-slide images, accommodating variations across different magnification scales. A weighted majority voting schema is utilized to combine individual scale decisions, ultimately producing a complementary and more accurate diagnostic outcome. A dataset comprising 92 patients (46 with meningioma and 46 with SFT) was used for evaluation. The experimental results demonstrate robust performance across different validation methods. In train-test evaluation, the model achieved 92.27% accuracy, 87.77% sensitivity, 97.55% specificity, and 92.46% F1-score. Performance further improved in 4-fold cross-validation, achieving 94.68% accuracy, 96.05% sensitivity, 93.11% specificity, and 95.07% F1-score. These findings highlight the potential of AI-based diagnostic approaches for precise differentiation between meningioma and SFT, paving the way for innovative diagnostic tools in pathology.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.