High-order limiting methods using maximum principle bounds derived from the Boltzmann equation I: Euler equations

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tarik Dzanic , Luigi Martinelli
{"title":"High-order limiting methods using maximum principle bounds derived from the Boltzmann equation I: Euler equations","authors":"Tarik Dzanic ,&nbsp;Luigi Martinelli","doi":"10.1016/j.jcp.2025.113895","DOIUrl":null,"url":null,"abstract":"<div><div>The use of limiting methods for high-order numerical approximations of hyperbolic conservation laws generally requires defining an admissible region/bounds for the solution. In this work, we present a novel approach for computing solution bounds and limiting for the Euler equations through the kinetic representation provided by the Boltzmann equation, which allows for extending limiters designed for linear advection directly to the Euler equations. Given an arbitrary set of solution values to compute bounds over (e.g., numerical stencil) and a desired linear advection limiter, the proposed approach yields an analytic expression for the admissible region of particle distribution function values, which may be numerically integrated to yield a set of bounds for the density, momentum, and total energy. These solution bounds are shown to preserve positivity of density/pressure/internal energy and, when paired with a limiting technique, can robustly resolve strong discontinuities while recovering high-order accuracy in smooth regions without any ad hoc corrections (e.g., relaxing the bounds). This approach is demonstrated in the context of an explicit unstructured high-order discontinuous Galerkin/flux reconstruction scheme for a variety of difficult problems in gas dynamics, including cases with extreme shocks and shock-vortex interactions. Furthermore, this work presents a foundation for limiting techniques for more complex macroscopic governing equations that can be derived from an underlying kinetic representation for which admissible solution bounds are not well-understood.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113895"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001780","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of limiting methods for high-order numerical approximations of hyperbolic conservation laws generally requires defining an admissible region/bounds for the solution. In this work, we present a novel approach for computing solution bounds and limiting for the Euler equations through the kinetic representation provided by the Boltzmann equation, which allows for extending limiters designed for linear advection directly to the Euler equations. Given an arbitrary set of solution values to compute bounds over (e.g., numerical stencil) and a desired linear advection limiter, the proposed approach yields an analytic expression for the admissible region of particle distribution function values, which may be numerically integrated to yield a set of bounds for the density, momentum, and total energy. These solution bounds are shown to preserve positivity of density/pressure/internal energy and, when paired with a limiting technique, can robustly resolve strong discontinuities while recovering high-order accuracy in smooth regions without any ad hoc corrections (e.g., relaxing the bounds). This approach is demonstrated in the context of an explicit unstructured high-order discontinuous Galerkin/flux reconstruction scheme for a variety of difficult problems in gas dynamics, including cases with extreme shocks and shock-vortex interactions. Furthermore, this work presents a foundation for limiting techniques for more complex macroscopic governing equations that can be derived from an underlying kinetic representation for which admissible solution bounds are not well-understood.
使用从玻尔兹曼方程导出的最大原则界限的高阶极限方法 I:欧拉方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信