Nicolas Antonio da Silva, Onur Özer, Magdalena Haller-Caskie, Yan-Rong Chen, Daniel Kolbe, Sabine Schade-Lindig, Joachim Wahl, Carola Berszin, Michael Francken, Irina Görner, Kerstin Schierhold, Joachim Pechtl, Gisela Grupe, Christoph Rinne, Johannes Müller, Tobias L. Lenz, Almut Nebel, Ben Krause-Kyora
{"title":"Admixture as a source for HLA variation in Neolithic European farming communities","authors":"Nicolas Antonio da Silva, Onur Özer, Magdalena Haller-Caskie, Yan-Rong Chen, Daniel Kolbe, Sabine Schade-Lindig, Joachim Wahl, Carola Berszin, Michael Francken, Irina Görner, Kerstin Schierhold, Joachim Pechtl, Gisela Grupe, Christoph Rinne, Johannes Müller, Tobias L. Lenz, Almut Nebel, Ben Krause-Kyora","doi":"10.1186/s13059-025-03509-6","DOIUrl":null,"url":null,"abstract":"The northern European Neolithic is characterized by two major demographic events: immigration of early farmers from Anatolia at 7500 years before present, and their admixture with local western hunter-gatherers forming late farmers, from around 6200 years before present. The influence of this admixture event on variation in the immune-relevant human leukocyte antigen (HLA) region is understudied. We analyzed genome-wide data of 125 individuals from seven archeological early farmer and late farmer sites located in present-day Germany. The late farmer group studied here is associated with the Wartberg culture, from around 5500–4800 years before present. We note that late farmers resulted from sex-biased admixture from male western hunter-gatherers. In addition, we observe Y-chromosome haplogroup I as the dominant lineage in late farmers, with site-specific sub-lineages. We analyze true HLA genotypes from 135 Neolithic individuals, the majority of which were produced in this study. We observe significant shifts in HLA allele frequencies from early farmers to late farmers, likely due to admixture with western hunter-gatherers. Especially for the haplotype DQB1*04:01-DRB1*08:01, there is evidence for a western hunter-gatherer origin. The HLA diversity increased from early farmers to late farmers. However, it is considerably lower than in modern populations. Both early farmers and late farmers exhibit a relatively narrow HLA allele spectrum compared to today. This coincides with sparse traces of pathogen DNA, potentially indicating a lower pathogen pressure at the time.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"28 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03509-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The northern European Neolithic is characterized by two major demographic events: immigration of early farmers from Anatolia at 7500 years before present, and their admixture with local western hunter-gatherers forming late farmers, from around 6200 years before present. The influence of this admixture event on variation in the immune-relevant human leukocyte antigen (HLA) region is understudied. We analyzed genome-wide data of 125 individuals from seven archeological early farmer and late farmer sites located in present-day Germany. The late farmer group studied here is associated with the Wartberg culture, from around 5500–4800 years before present. We note that late farmers resulted from sex-biased admixture from male western hunter-gatherers. In addition, we observe Y-chromosome haplogroup I as the dominant lineage in late farmers, with site-specific sub-lineages. We analyze true HLA genotypes from 135 Neolithic individuals, the majority of which were produced in this study. We observe significant shifts in HLA allele frequencies from early farmers to late farmers, likely due to admixture with western hunter-gatherers. Especially for the haplotype DQB1*04:01-DRB1*08:01, there is evidence for a western hunter-gatherer origin. The HLA diversity increased from early farmers to late farmers. However, it is considerably lower than in modern populations. Both early farmers and late farmers exhibit a relatively narrow HLA allele spectrum compared to today. This coincides with sparse traces of pathogen DNA, potentially indicating a lower pathogen pressure at the time.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.