{"title":"Collision avoidance method for unmanned ships using a modified APF algorithm","authors":"Lianbo Li, Wenhao Wu, Zhengqian Li, Fangjie Wang","doi":"10.3389/fmars.2025.1550529","DOIUrl":null,"url":null,"abstract":"The Artificial Potential Field (APF) algorithm has been widely used for collision avoidance on unmanned ships. However, traditional APF methods have several defects that need to be addressed. To ensure safe navigation with good seamanship and full compliance with the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGS), this study proposes a dynamic collision avoidance method based on the APF algorithm. The proposed method incorporates a ship domain priority judgment encounter situation, allowing the algorithm to perform collision avoidance operations in accordance with actual operational requirements. To address path interference and unreachable target issues, a new attractive potential field function is introduced, dividing the attractive potential field of the target point into multiple segments simultaneously. Additionally, the repulsive force on the own ship is reduced when close to the target point. The results show that the proposed method effectively resolves path oscillation problems by integrating the potential field based on traditional APF with partial ideas from the Dynamic Window Approach (DWA). In comparison with traditional APF algorithms, the overall smoothing degree was improved by 71.8%, verifying the effectiveness and superiority of the proposed algorithm.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"66 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1550529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Artificial Potential Field (APF) algorithm has been widely used for collision avoidance on unmanned ships. However, traditional APF methods have several defects that need to be addressed. To ensure safe navigation with good seamanship and full compliance with the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGS), this study proposes a dynamic collision avoidance method based on the APF algorithm. The proposed method incorporates a ship domain priority judgment encounter situation, allowing the algorithm to perform collision avoidance operations in accordance with actual operational requirements. To address path interference and unreachable target issues, a new attractive potential field function is introduced, dividing the attractive potential field of the target point into multiple segments simultaneously. Additionally, the repulsive force on the own ship is reduced when close to the target point. The results show that the proposed method effectively resolves path oscillation problems by integrating the potential field based on traditional APF with partial ideas from the Dynamic Window Approach (DWA). In comparison with traditional APF algorithms, the overall smoothing degree was improved by 71.8%, verifying the effectiveness and superiority of the proposed algorithm.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.