Sudhanshu Mittal, Joshua Niemeijer, Özgün Çiçek, Maxim Tatarchenko, Jan Ehrhardt, Jörg P. Schäfer, Heinz Handels, Thomas Brox
{"title":"Realistic Evaluation of Deep Active Learning for Image Classification and Semantic Segmentation","authors":"Sudhanshu Mittal, Joshua Niemeijer, Özgün Çiçek, Maxim Tatarchenko, Jan Ehrhardt, Jörg P. Schäfer, Heinz Handels, Thomas Brox","doi":"10.1007/s11263-025-02372-z","DOIUrl":null,"url":null,"abstract":"<p>Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either incomplete or below par. This study critically assesses various active learning approaches, identifying key factors essential for choosing the most effective active learning method. It includes a comprehensive guide to obtain the best performance for each case, in image classification and semantic segmentation. For image classification, the AL methods improve by a large-margin when integrated with data augmentation and semi-supervised learning, but barely perform better than the random baseline. In this work, we evaluate them under more realistic settings and propose a more suitable evaluation protocol. For semantic segmentation, previous academic studies focused on diverse datasets with substantial annotation resources. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. The study evaluates active learning techniques under various conditions including data redundancy, the use of semi-supervised learning, and differing annotation budgets. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"90 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02372-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either incomplete or below par. This study critically assesses various active learning approaches, identifying key factors essential for choosing the most effective active learning method. It includes a comprehensive guide to obtain the best performance for each case, in image classification and semantic segmentation. For image classification, the AL methods improve by a large-margin when integrated with data augmentation and semi-supervised learning, but barely perform better than the random baseline. In this work, we evaluate them under more realistic settings and propose a more suitable evaluation protocol. For semantic segmentation, previous academic studies focused on diverse datasets with substantial annotation resources. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. The study evaluates active learning techniques under various conditions including data redundancy, the use of semi-supervised learning, and differing annotation budgets. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.