E. Uyanga , T. Ochirkhuyag , N. Jargalan , D. Sodkhuu , B. Zhang , J.H. Park , M. Delgermaa , Kh. Odbadrakh , D. Odkhuu
{"title":"Fe2P based alloys as possible rare-earth free permanent magnets","authors":"E. Uyanga , T. Ochirkhuyag , N. Jargalan , D. Sodkhuu , B. Zhang , J.H. Park , M. Delgermaa , Kh. Odbadrakh , D. Odkhuu","doi":"10.1016/j.actamat.2025.120848","DOIUrl":null,"url":null,"abstract":"<div><div>The Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P alloy exhibits high saturation magnetization, large uniaxial magnetic anisotropy, and excellent thermal stability, which make it a potential permanent magnet; however, it suffers from relatively low coercivity <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, and Curie temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> below room temperature. Herein, using systematic theoretical and experimental investigations, it is demonstrated that multi-element substitutions of Co for Fe, and Si and B for P site (among 3<span><math><mi>d</mi></math></span> and 2<span><math><mi>p</mi></math></span>-3<span><math><mi>p</mi></math></span> substitutional elements) enhance permanent magnetic performance, while retaining its thermodynamic stability. Specifically, we find <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> values up to 1 kOe at room temperature and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> values more than 500 K at a magnetic field of 2 T in (Fe,Co)<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(P,Si,B), leading to the theoretical energy product (<span><math><mrow><mi>B</mi><mi>H</mi></mrow></math></span>)<span><math><msub><mrow></mrow><mrow><mi>max</mi></mrow></msub></math></span> of 126 kJ/m<sup>3</sup> and hardness parameter no less than 1 at room temperature, which are notably larger than the corresponding values for Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P and (Fe,Co)<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(P,Si) alloys. These results suggest a venue for significant advances in the development of permanent magnetic materials based on the Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P-type structure.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120848"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425001405","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The FeP alloy exhibits high saturation magnetization, large uniaxial magnetic anisotropy, and excellent thermal stability, which make it a potential permanent magnet; however, it suffers from relatively low coercivity , and Curie temperature below room temperature. Herein, using systematic theoretical and experimental investigations, it is demonstrated that multi-element substitutions of Co for Fe, and Si and B for P site (among 3 and 2-3 substitutional elements) enhance permanent magnetic performance, while retaining its thermodynamic stability. Specifically, we find values up to 1 kOe at room temperature and values more than 500 K at a magnetic field of 2 T in (Fe,Co)(P,Si,B), leading to the theoretical energy product () of 126 kJ/m3 and hardness parameter no less than 1 at room temperature, which are notably larger than the corresponding values for FeP and (Fe,Co)(P,Si) alloys. These results suggest a venue for significant advances in the development of permanent magnetic materials based on the FeP-type structure.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.