Fe2P based alloys as possible rare-earth free permanent magnets

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
E. Uyanga , T. Ochirkhuyag , N. Jargalan , D. Sodkhuu , B. Zhang , J.H. Park , M. Delgermaa , Kh. Odbadrakh , D. Odkhuu
{"title":"Fe2P based alloys as possible rare-earth free permanent magnets","authors":"E. Uyanga ,&nbsp;T. Ochirkhuyag ,&nbsp;N. Jargalan ,&nbsp;D. Sodkhuu ,&nbsp;B. Zhang ,&nbsp;J.H. Park ,&nbsp;M. Delgermaa ,&nbsp;Kh. Odbadrakh ,&nbsp;D. Odkhuu","doi":"10.1016/j.actamat.2025.120848","DOIUrl":null,"url":null,"abstract":"<div><div>The Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P alloy exhibits high saturation magnetization, large uniaxial magnetic anisotropy, and excellent thermal stability, which make it a potential permanent magnet; however, it suffers from relatively low coercivity <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, and Curie temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> below room temperature. Herein, using systematic theoretical and experimental investigations, it is demonstrated that multi-element substitutions of Co for Fe, and Si and B for P site (among 3<span><math><mi>d</mi></math></span> and 2<span><math><mi>p</mi></math></span>-3<span><math><mi>p</mi></math></span> substitutional elements) enhance permanent magnetic performance, while retaining its thermodynamic stability. Specifically, we find <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> values up to 1 kOe at room temperature and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> values more than 500 K at a magnetic field of 2 T in (Fe,Co)<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(P,Si,B), leading to the theoretical energy product (<span><math><mrow><mi>B</mi><mi>H</mi></mrow></math></span>)<span><math><msub><mrow></mrow><mrow><mi>max</mi></mrow></msub></math></span> of 126 kJ/m<sup>3</sup> and hardness parameter no less than 1 at room temperature, which are notably larger than the corresponding values for Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P and (Fe,Co)<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(P,Si) alloys. These results suggest a venue for significant advances in the development of permanent magnetic materials based on the Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P-type structure.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120848"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425001405","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Fe2P alloy exhibits high saturation magnetization, large uniaxial magnetic anisotropy, and excellent thermal stability, which make it a potential permanent magnet; however, it suffers from relatively low coercivity Hc, and Curie temperature Tc below room temperature. Herein, using systematic theoretical and experimental investigations, it is demonstrated that multi-element substitutions of Co for Fe, and Si and B for P site (among 3d and 2p-3p substitutional elements) enhance permanent magnetic performance, while retaining its thermodynamic stability. Specifically, we find Hc values up to 1 kOe at room temperature and Tc values more than 500 K at a magnetic field of 2 T in (Fe,Co)2(P,Si,B), leading to the theoretical energy product (BH)max of 126 kJ/m3 and hardness parameter no less than 1 at room temperature, which are notably larger than the corresponding values for Fe2P and (Fe,Co)2(P,Si) alloys. These results suggest a venue for significant advances in the development of permanent magnetic materials based on the Fe2P-type structure.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信