Explained Deep Learning Framework for COVID-19 Detection in Volumetric CT Images Aligned with the British Society of Thoracic Imaging Reporting Guidance: A Pilot Study.

Shereen Fouad, Muhammad Usman, Ra'eesa Kabir, Arvind Rajasekaran, John Morlese, Pankaj Nagori, Bahadar Bhatia
{"title":"Explained Deep Learning Framework for COVID-19 Detection in Volumetric CT Images Aligned with the British Society of Thoracic Imaging Reporting Guidance: A Pilot Study.","authors":"Shereen Fouad, Muhammad Usman, Ra'eesa Kabir, Arvind Rajasekaran, John Morlese, Pankaj Nagori, Bahadar Bhatia","doi":"10.1007/s10278-025-01444-3","DOIUrl":null,"url":null,"abstract":"<p><p>In March 2020, the British Society of Thoracic Imaging (BSTI) introduced a reporting guidance for COVID-19 detection to streamline standardised reporting and enhance agreement between radiologists. However, most current DL methods do not conform to this guidance. This study introduces a multi-class deep learning (DL) model to identify BSTI COVID-19 categories within CT volumes, classified as 'Classic', 'Probable', 'Indeterminate', or 'Non-COVID'. A total of 56 CT pseudoanonymised images were collected from patients with suspected COVID-19 and annotated by an experienced chest subspecialty radiologist following the BSTI guidance. We evaluated the performance of multiple DL-based models, including three-dimensional (3D) ResNet architectures, pre-trained on the Kinetics-700 video dataset. For better interpretability of the results, our approach incorporates a post-hoc visual explainability feature to highlight the areas of the image most indicative of the COVID-19 category. Our four-class classification DL framework achieves an overall accuracy of 75%. However, the model struggled to detect the 'Indeterminate' COVID-19 group, whose removal significantly improved the model's accuracy to 90%. The proposed explainable multi-classification DL model yields accurate detection of 'Classic', 'Probable', and 'Non-COVID' categories with poor detection ability for 'Indeterminate' COVID-19 cases. These findings are consistent with clinical studies that aimed at validating the BSTI reporting manually amongst consultant radiologists.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01444-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In March 2020, the British Society of Thoracic Imaging (BSTI) introduced a reporting guidance for COVID-19 detection to streamline standardised reporting and enhance agreement between radiologists. However, most current DL methods do not conform to this guidance. This study introduces a multi-class deep learning (DL) model to identify BSTI COVID-19 categories within CT volumes, classified as 'Classic', 'Probable', 'Indeterminate', or 'Non-COVID'. A total of 56 CT pseudoanonymised images were collected from patients with suspected COVID-19 and annotated by an experienced chest subspecialty radiologist following the BSTI guidance. We evaluated the performance of multiple DL-based models, including three-dimensional (3D) ResNet architectures, pre-trained on the Kinetics-700 video dataset. For better interpretability of the results, our approach incorporates a post-hoc visual explainability feature to highlight the areas of the image most indicative of the COVID-19 category. Our four-class classification DL framework achieves an overall accuracy of 75%. However, the model struggled to detect the 'Indeterminate' COVID-19 group, whose removal significantly improved the model's accuracy to 90%. The proposed explainable multi-classification DL model yields accurate detection of 'Classic', 'Probable', and 'Non-COVID' categories with poor detection ability for 'Indeterminate' COVID-19 cases. These findings are consistent with clinical studies that aimed at validating the BSTI reporting manually amongst consultant radiologists.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信