An Analysis of the Efficacy of Deep Learning-Based Pectoralis Muscle Segmentation in Chest CT for Sarcopenia Diagnosis.

Joo Chan Choi, Young Jae Kim, Kwang Gi Kim, Eun Young Kim
{"title":"An Analysis of the Efficacy of Deep Learning-Based Pectoralis Muscle Segmentation in Chest CT for Sarcopenia Diagnosis.","authors":"Joo Chan Choi, Young Jae Kim, Kwang Gi Kim, Eun Young Kim","doi":"10.1007/s10278-025-01443-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia is the loss of skeletal muscle function and mass and is a poor prognostic factor. This condition is typically diagnosed by measuring skeletal muscle mass at the L3 level. Chest computed tomography (CT) scans do not include the L3 level. We aimed to determine if these scans can be used to diagnose sarcopenia and thus guide patient management and treatment decisions. This study compared the ResNet-UNet, Recurrent Residual UNet, and UNet3 + models for segmenting and measuring the pectoralis muscle area in chest CT images. A total of 4932 chest CT images were collected from 1644 patients, and additional abdominal CT data were collected from 294 patients. The performance of the models was evaluated using the dice similarity coefficient (DSC), accuracy, sensitivity, and specificity. Furthermore, the correlation between the segmented pectoralis and L3 muscle areas was compared using linear regression analysis. All three models demonstrated a high segmentation performance, with the UNet3 + model achieving the best performance (DSC 0.95 ± 0.03). Pearson correlation coefficient between the pectoralis and L3 muscle areas showed a significant positive correlation (r = 0.65). The correlation coefficient between the transformed pectoralis and L3 muscle areas showed a stronger positive correlation in both univariate analysis using only muscle area (r = 0.74) and multivariate analysis considering sex, weight, age, and muscle area (r = 0.83). Segmentation of the pectoralis muscle area using artificial intelligence (AI) on chest CT was highly accurate, and the measured values showed a strong correlation with the L3 muscle area. Chest CT using AI technology could play a significant role in the diagnosis of sarcopenia.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01443-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcopenia is the loss of skeletal muscle function and mass and is a poor prognostic factor. This condition is typically diagnosed by measuring skeletal muscle mass at the L3 level. Chest computed tomography (CT) scans do not include the L3 level. We aimed to determine if these scans can be used to diagnose sarcopenia and thus guide patient management and treatment decisions. This study compared the ResNet-UNet, Recurrent Residual UNet, and UNet3 + models for segmenting and measuring the pectoralis muscle area in chest CT images. A total of 4932 chest CT images were collected from 1644 patients, and additional abdominal CT data were collected from 294 patients. The performance of the models was evaluated using the dice similarity coefficient (DSC), accuracy, sensitivity, and specificity. Furthermore, the correlation between the segmented pectoralis and L3 muscle areas was compared using linear regression analysis. All three models demonstrated a high segmentation performance, with the UNet3 + model achieving the best performance (DSC 0.95 ± 0.03). Pearson correlation coefficient between the pectoralis and L3 muscle areas showed a significant positive correlation (r = 0.65). The correlation coefficient between the transformed pectoralis and L3 muscle areas showed a stronger positive correlation in both univariate analysis using only muscle area (r = 0.74) and multivariate analysis considering sex, weight, age, and muscle area (r = 0.83). Segmentation of the pectoralis muscle area using artificial intelligence (AI) on chest CT was highly accurate, and the measured values showed a strong correlation with the L3 muscle area. Chest CT using AI technology could play a significant role in the diagnosis of sarcopenia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信