A Proof-of-Concept Solution for Co-locating 2D Histology Images in 3D for Histology-to-CT and MR Image Registration: Closing the Loop for Bone Sarcoma Treatment Planning.
Robert Phillips, Constantine Zakkaroff, Keren Dittmer, Nicholas Robilliard, Kenzie Baer, Anthony Butler
{"title":"A Proof-of-Concept Solution for Co-locating 2D Histology Images in 3D for Histology-to-CT and MR Image Registration: Closing the Loop for Bone Sarcoma Treatment Planning.","authors":"Robert Phillips, Constantine Zakkaroff, Keren Dittmer, Nicholas Robilliard, Kenzie Baer, Anthony Butler","doi":"10.1007/s10278-025-01426-5","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a proof-of-concept solution designed to facilitate more accurate radiographic feature characterisation in pre-surgical CT/MR volumes. The solution involves 3D co-location of 2D digital histology slides within ex-vivo, tumour tissue CT volumes. Initially, laboratory dissection measurements seed the placement of histology slices in corresponding CT volumes, followed by in-plane point-based registration of bone in histology images to the bone in CT. Validation using six bisected canine humerus ex-vivo CT datasets indicated a plane misalignment of 0.19 ± 1.8 mm. User input sensitivity was assessed at 0.08 ± 0.2 mm for plane translation and 0-1.6° deviation. These results show a similar magnitude of error to related prostate histology co-location work. Although demonstrated with a femoral canine sarcoma tumour, this solution can be generalised to various orthopaedic geometries and sites. It supports high-fidelity histology image co-location to improve understanding of tissue characterisation accuracy in clinical radiology. This solution requires only minimal adjustment to routine workflows. By integrating histology insights earlier in the presentation-diagnosis-planning-surgery-recovery loop, this solution guides data co-location to support the continued evaluation of safe pre-surgical margins.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01426-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a proof-of-concept solution designed to facilitate more accurate radiographic feature characterisation in pre-surgical CT/MR volumes. The solution involves 3D co-location of 2D digital histology slides within ex-vivo, tumour tissue CT volumes. Initially, laboratory dissection measurements seed the placement of histology slices in corresponding CT volumes, followed by in-plane point-based registration of bone in histology images to the bone in CT. Validation using six bisected canine humerus ex-vivo CT datasets indicated a plane misalignment of 0.19 ± 1.8 mm. User input sensitivity was assessed at 0.08 ± 0.2 mm for plane translation and 0-1.6° deviation. These results show a similar magnitude of error to related prostate histology co-location work. Although demonstrated with a femoral canine sarcoma tumour, this solution can be generalised to various orthopaedic geometries and sites. It supports high-fidelity histology image co-location to improve understanding of tissue characterisation accuracy in clinical radiology. This solution requires only minimal adjustment to routine workflows. By integrating histology insights earlier in the presentation-diagnosis-planning-surgery-recovery loop, this solution guides data co-location to support the continued evaluation of safe pre-surgical margins.