{"title":"[Benefits and limitations of circulating tumor DNA in breast cancer].","authors":"Nicolas Kiavue, Luc Cabel","doi":"10.1016/j.bulcan.2024.12.016","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of circulating tumor DNA (ctDNA) has made significant advances in oncology in recent years. ctDNA offers a range of applications, including the identification of theranostic mutations, monitoring of tumor recurrence, and assessing treatment efficacy. In breast cancer, several ctDNA-based tests for detecting relapse during follow-up are currently under validation, with some already available in countries like the United States. In metastatic breast cancer, ctDNA levels and their dynamics during treatment have prognostic value. The PADA-1 trial demonstrated that a therapeutic adaptation based on the detection of a circulating subclone via circulating tumor DNA (ctDNA) was feasible and potentially beneficial for patients. This review will explore the methods for ctDNA detection and discuss the potential benefits of incorporating this technology into breast cancer monitoring and management across various clinical scenarios.</p>","PeriodicalId":93917,"journal":{"name":"Bulletin du cancer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin du cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bulcan.2024.12.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of circulating tumor DNA (ctDNA) has made significant advances in oncology in recent years. ctDNA offers a range of applications, including the identification of theranostic mutations, monitoring of tumor recurrence, and assessing treatment efficacy. In breast cancer, several ctDNA-based tests for detecting relapse during follow-up are currently under validation, with some already available in countries like the United States. In metastatic breast cancer, ctDNA levels and their dynamics during treatment have prognostic value. The PADA-1 trial demonstrated that a therapeutic adaptation based on the detection of a circulating subclone via circulating tumor DNA (ctDNA) was feasible and potentially beneficial for patients. This review will explore the methods for ctDNA detection and discuss the potential benefits of incorporating this technology into breast cancer monitoring and management across various clinical scenarios.