Sample size determination for a study with variable follow-up time.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Guogen Shan, Yahui Zhang, Xinlin Lu, Yulin Li, Minggen Lu, Zhigang Li
{"title":"Sample size determination for a study with variable follow-up time.","authors":"Guogen Shan, Yahui Zhang, Xinlin Lu, Yulin Li, Minggen Lu, Zhigang Li","doi":"10.1080/10543406.2025.2469879","DOIUrl":null,"url":null,"abstract":"<p><p>For a study to detect the outcome change at the follow-up visit from baseline, the pre-test and post-test design is commonly used to assess the treatment-control difference. Several existing methods were developed for sample size calculation including the subtraction method, analysis of covariance (ANCOVA), and linear mixed model. The first two methods can be used when the follow-up time is the same as scheduled. Although the linear mixed model can analyze the repeated measures by including the actual visit time to account for the variability of the follow-up time, it often assumes a constant treatment-control difference at any follow-up time which may not be correct in practice. We propose to develop a new statistical model to compare the treatment-control difference at the planned follow-up time while controlling for the follow-up time variation. The spline functions are used to estimate the trajectories of the treatment arm and the control arm. We compared the performance of these methods with regards to type I error rate, statistical power, and sample size under various conditions. These four methods all control for the type I error rate. The new method and the ANCOVA method are often more powerful than the other two methods, and they have similar statistical power when a linear disease progression is satisfied. For a study with non-linear disease progression, the new method can be more powerful than the ANCOVA method. We used data from a completed Alzheimer's disease trial to illustrate the application of the proposed method.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2469879","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

For a study to detect the outcome change at the follow-up visit from baseline, the pre-test and post-test design is commonly used to assess the treatment-control difference. Several existing methods were developed for sample size calculation including the subtraction method, analysis of covariance (ANCOVA), and linear mixed model. The first two methods can be used when the follow-up time is the same as scheduled. Although the linear mixed model can analyze the repeated measures by including the actual visit time to account for the variability of the follow-up time, it often assumes a constant treatment-control difference at any follow-up time which may not be correct in practice. We propose to develop a new statistical model to compare the treatment-control difference at the planned follow-up time while controlling for the follow-up time variation. The spline functions are used to estimate the trajectories of the treatment arm and the control arm. We compared the performance of these methods with regards to type I error rate, statistical power, and sample size under various conditions. These four methods all control for the type I error rate. The new method and the ANCOVA method are often more powerful than the other two methods, and they have similar statistical power when a linear disease progression is satisfied. For a study with non-linear disease progression, the new method can be more powerful than the ANCOVA method. We used data from a completed Alzheimer's disease trial to illustrate the application of the proposed method.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信