Decoding the effects of mutation on protein interactions using machine learning.

IF 2.9 Q2 BIOPHYSICS
Biophysics reviews Pub Date : 2025-02-21 eCollection Date: 2025-03-01 DOI:10.1063/5.0249920
Wang Xu, Anbang Li, Yunjie Zhao, Yunhui Peng
{"title":"Decoding the effects of mutation on protein interactions using machine learning.","authors":"Wang Xu, Anbang Li, Yunjie Zhao, Yunhui Peng","doi":"10.1063/5.0249920","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting mutation-caused binding free energy changes (ΔΔGs) on protein interactions is crucial for understanding how genetic variations affect interactions between proteins and other biomolecules, such as proteins, DNA/RNA, and ligands, which are vital for regulating numerous biological processes. Developing computational approaches with high accuracy and efficiency is critical for elucidating the mechanisms underlying various diseases, identifying potential biomarkers for early diagnosis, and developing targeted therapies. This review provides a comprehensive overview of recent advancements in predicting the impact of mutations on protein interactions across different interaction types, which are central to understanding biological processes and disease mechanisms, including cancer. We summarize recent progress in predictive approaches, including physicochemical-based, machine learning, and deep learning methods, evaluating the strengths and limitations of each. Additionally, we discuss the challenges related to the limitations of mutational data, including biases, data quality, and dataset size, and explore the difficulties in developing accurate prediction tools for mutation-induced effects on protein interactions. Finally, we discuss future directions for advancing these computational tools, highlighting the capabilities of advancing technologies, such as artificial intelligence to drive significant improvements in mutational effects prediction.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"6 1","pages":"011307"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0249920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting mutation-caused binding free energy changes (ΔΔGs) on protein interactions is crucial for understanding how genetic variations affect interactions between proteins and other biomolecules, such as proteins, DNA/RNA, and ligands, which are vital for regulating numerous biological processes. Developing computational approaches with high accuracy and efficiency is critical for elucidating the mechanisms underlying various diseases, identifying potential biomarkers for early diagnosis, and developing targeted therapies. This review provides a comprehensive overview of recent advancements in predicting the impact of mutations on protein interactions across different interaction types, which are central to understanding biological processes and disease mechanisms, including cancer. We summarize recent progress in predictive approaches, including physicochemical-based, machine learning, and deep learning methods, evaluating the strengths and limitations of each. Additionally, we discuss the challenges related to the limitations of mutational data, including biases, data quality, and dataset size, and explore the difficulties in developing accurate prediction tools for mutation-induced effects on protein interactions. Finally, we discuss future directions for advancing these computational tools, highlighting the capabilities of advancing technologies, such as artificial intelligence to drive significant improvements in mutational effects prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信