Predicting Agitation-Sedation Levels in Intensive Care Unit Patients: Development of an Ensemble Model.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Pei-Yu Dai, Pei-Yi Lin, Ruey-Kai Sheu, Shu-Fang Liu, Yu-Cheng Wu, Chieh-Liang Wu, Wei-Lin Chen, Chien-Chung Huang, Guan-Yin Lin, Lun-Chi Chen
{"title":"Predicting Agitation-Sedation Levels in Intensive Care Unit Patients: Development of an Ensemble Model.","authors":"Pei-Yu Dai, Pei-Yi Lin, Ruey-Kai Sheu, Shu-Fang Liu, Yu-Cheng Wu, Chieh-Liang Wu, Wei-Lin Chen, Chien-Chung Huang, Guan-Yin Lin, Lun-Chi Chen","doi":"10.2196/63601","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Agitation and sedation management is critical in intensive care as it affects patient safety. Traditional nursing assessments suffer from low frequency and subjectivity. Automating these assessments can boost intensive care unit (ICU) efficiency, treatment capacity, and patient safety.</p><p><strong>Objectives: </strong>The aim of this study was to develop a machine-learning based assessment of agitation and sedation.</p><p><strong>Methods: </strong>Using data from the Taichung Veterans General Hospital ICU database (2020), an ensemble learning model was developed for classifying the levels of agitation and sedation. Different ensemble learning model sequences were compared. In addition, an interpretable artificial intelligence approach, SHAP (Shapley additive explanations), was employed for explanatory analysis.</p><p><strong>Results: </strong>With 20 features and 121,303 data points, the random forest model achieved high area under the curve values across all models (sedation classification: 0.97; agitation classification: 0.88). The ensemble learning model enhanced agitation sensitivity (0.82) while maintaining high AUC values across all categories (all >0.82). The model explanations aligned with clinical experience.</p><p><strong>Conclusions: </strong>This study proposes an ICU agitation-sedation assessment automation using machine learning, enhancing efficiency and safety. Ensemble learning improves agitation sensitivity while maintaining accuracy. Real-time monitoring and future digital integration have the potential for advancements in intensive care.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e63601"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/63601","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Agitation and sedation management is critical in intensive care as it affects patient safety. Traditional nursing assessments suffer from low frequency and subjectivity. Automating these assessments can boost intensive care unit (ICU) efficiency, treatment capacity, and patient safety.

Objectives: The aim of this study was to develop a machine-learning based assessment of agitation and sedation.

Methods: Using data from the Taichung Veterans General Hospital ICU database (2020), an ensemble learning model was developed for classifying the levels of agitation and sedation. Different ensemble learning model sequences were compared. In addition, an interpretable artificial intelligence approach, SHAP (Shapley additive explanations), was employed for explanatory analysis.

Results: With 20 features and 121,303 data points, the random forest model achieved high area under the curve values across all models (sedation classification: 0.97; agitation classification: 0.88). The ensemble learning model enhanced agitation sensitivity (0.82) while maintaining high AUC values across all categories (all >0.82). The model explanations aligned with clinical experience.

Conclusions: This study proposes an ICU agitation-sedation assessment automation using machine learning, enhancing efficiency and safety. Ensemble learning improves agitation sensitivity while maintaining accuracy. Real-time monitoring and future digital integration have the potential for advancements in intensive care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信