{"title":"MRpoxNet: An enhanced deep learning approach for early detection of monkeypox using modified ResNet50.","authors":"Vandana, Chetna Sharma, Mohd Asif Shah","doi":"10.1177/20552076251320726","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop an enhanced deep learning model, MRpoxNet, based on a modified ResNet50 architecture for the early detection of monkeypox from digital skin lesion images, ensuring high diagnostic accuracy and clinical reliability.</p><p><strong>Methods: </strong>The study utilized the Kaggle MSID dataset, initially comprising 1156 images, augmented to 6116 images across three classes: monkeypox, non-monkeypox, and normal skin. MRpoxNet was developed by extending ResNet50 from 177 to 182 layers, incorporating additional convolutional, ReLU, dropout, and batch normalization layers. Performance was evaluated using metrics such as accuracy, precision, recall, F1 score, sensitivity, and specificity. Comparative analyses were conducted against established models like ResNet50, AlexNet, VGG16, and GoogleNet.</p><p><strong>Results: </strong>MRpoxNet achieved a diagnostic accuracy of 98.1%, outperforming baseline models in all key metrics. The enhanced architecture demonstrated superior robustness in distinguishing monkeypox lesions from other skin conditions, highlighting its potential for reliable clinical application.</p><p><strong>Conclusion: </strong>MRpoxNet provides a robust and efficient solution for early monkeypox detection. Its superior performance suggests readiness for integration into diagnostic workflows, with future enhancements aimed at dataset expansion and multimodal adaptability to diverse clinical scenarios.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251320726"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251320726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To develop an enhanced deep learning model, MRpoxNet, based on a modified ResNet50 architecture for the early detection of monkeypox from digital skin lesion images, ensuring high diagnostic accuracy and clinical reliability.
Methods: The study utilized the Kaggle MSID dataset, initially comprising 1156 images, augmented to 6116 images across three classes: monkeypox, non-monkeypox, and normal skin. MRpoxNet was developed by extending ResNet50 from 177 to 182 layers, incorporating additional convolutional, ReLU, dropout, and batch normalization layers. Performance was evaluated using metrics such as accuracy, precision, recall, F1 score, sensitivity, and specificity. Comparative analyses were conducted against established models like ResNet50, AlexNet, VGG16, and GoogleNet.
Results: MRpoxNet achieved a diagnostic accuracy of 98.1%, outperforming baseline models in all key metrics. The enhanced architecture demonstrated superior robustness in distinguishing monkeypox lesions from other skin conditions, highlighting its potential for reliable clinical application.
Conclusion: MRpoxNet provides a robust and efficient solution for early monkeypox detection. Its superior performance suggests readiness for integration into diagnostic workflows, with future enhancements aimed at dataset expansion and multimodal adaptability to diverse clinical scenarios.