Radiotherapy resistance driven by Asparagine endopeptidase through ATR pathway modulation in breast cancer.

IF 11.4 1区 医学 Q1 ONCOLOGY
Macarena Morillo-Huesca, Ignacio G López-Cepero, Ryan Conesa-Bakkali, Mercedes Tomé, Colin Watts, Pablo Huertas, Gema Moreno-Bueno, Raúl V Durán, Jonathan Martínez-Fábregas
{"title":"Radiotherapy resistance driven by Asparagine endopeptidase through ATR pathway modulation in breast cancer.","authors":"Macarena Morillo-Huesca, Ignacio G López-Cepero, Ryan Conesa-Bakkali, Mercedes Tomé, Colin Watts, Pablo Huertas, Gema Moreno-Bueno, Raúl V Durán, Jonathan Martínez-Fábregas","doi":"10.1186/s13046-025-03334-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor resistance represents a major challenge in the current oncology landscape. Asparagine endopeptidase (AEP) overexpression correlates with worse prognosis and reduced overall survival in most human solid tumors. However, the underlying mechanisms of the connection between AEP and reduced overall survival in cancer patients remain unclear.</p><p><strong>Methods: </strong>High-throughput proteomics, cellular and molecular biology approaches and clinical data from breast cancer (BC) patients were used to identify novel, biologically relevant AEP targets. Immunoblotting and qPCR analyses were used to quantify protein and mRNA levels. Flow cytometry, confocal microscopy, chemical inhibitors, siRNA- and shRNA-silencing and DNA repair assays were used as functional assays. In-silico analyses using the TCGA BC dataset and immunofluorescence assays in an independent cohort of invasive ductal (ID) BC patients were used to validate the clinical relevance of our findings.</p><p><strong>Results: </strong>Here we showed a dual role for AEP in genomic stability and radiotherapy resistance in BC patients by suppressing ATR and PPP1R10 levels. Reduced ATR and PPP1R10 levels were found in BC patients expressing high AEP levels and correlated with worst prognosis. Mechanistically, AEP suppresses ATR levels, reducing DNA damage-induced cell death, and PPP1R10 levels, promoting Chek1/P53 cell cycle checkpoint activation, allowing BC cells to efficiently repair DNA. Functional studies revealed AEP-deficiency results in genomic instability, increased DNA damage signaling, reduced Chek1/P53 activation, impaired DNA repair and cell death, with phosphatase inhibitors restoring the DNA damage response in AEP-deficient BC cells. Furthermore, AEP inhibition sensitized BC cells to the chemotherapeutic reagents cisplatin and etoposide. Immunofluorescence assays in an independent cohort of IDBC patients showed increased AEP levels in ductal cells. These analyses showed that higher AEP levels in radioresistant IDBC patients resulted in ATR nuclear eviction, revealing AEPhigh/ATRlow protein levels as an efficient predictive biomarker for the stratification of radioresistant patients.</p><p><strong>Conclusion: </strong>The newly identified AEP/ATR/PPP1R10 axis plays a dual role in genomic stability and radiotherapy resistance in BC. Our work provides new clues to the underlying mechanisms of tumor resistance and strong evidence validating the AEP/ATR axis as a novel predictive biomarker and therapeutic target for the stratification and treatment of radioresistant BC patients.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"74"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03334-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tumor resistance represents a major challenge in the current oncology landscape. Asparagine endopeptidase (AEP) overexpression correlates with worse prognosis and reduced overall survival in most human solid tumors. However, the underlying mechanisms of the connection between AEP and reduced overall survival in cancer patients remain unclear.

Methods: High-throughput proteomics, cellular and molecular biology approaches and clinical data from breast cancer (BC) patients were used to identify novel, biologically relevant AEP targets. Immunoblotting and qPCR analyses were used to quantify protein and mRNA levels. Flow cytometry, confocal microscopy, chemical inhibitors, siRNA- and shRNA-silencing and DNA repair assays were used as functional assays. In-silico analyses using the TCGA BC dataset and immunofluorescence assays in an independent cohort of invasive ductal (ID) BC patients were used to validate the clinical relevance of our findings.

Results: Here we showed a dual role for AEP in genomic stability and radiotherapy resistance in BC patients by suppressing ATR and PPP1R10 levels. Reduced ATR and PPP1R10 levels were found in BC patients expressing high AEP levels and correlated with worst prognosis. Mechanistically, AEP suppresses ATR levels, reducing DNA damage-induced cell death, and PPP1R10 levels, promoting Chek1/P53 cell cycle checkpoint activation, allowing BC cells to efficiently repair DNA. Functional studies revealed AEP-deficiency results in genomic instability, increased DNA damage signaling, reduced Chek1/P53 activation, impaired DNA repair and cell death, with phosphatase inhibitors restoring the DNA damage response in AEP-deficient BC cells. Furthermore, AEP inhibition sensitized BC cells to the chemotherapeutic reagents cisplatin and etoposide. Immunofluorescence assays in an independent cohort of IDBC patients showed increased AEP levels in ductal cells. These analyses showed that higher AEP levels in radioresistant IDBC patients resulted in ATR nuclear eviction, revealing AEPhigh/ATRlow protein levels as an efficient predictive biomarker for the stratification of radioresistant patients.

Conclusion: The newly identified AEP/ATR/PPP1R10 axis plays a dual role in genomic stability and radiotherapy resistance in BC. Our work provides new clues to the underlying mechanisms of tumor resistance and strong evidence validating the AEP/ATR axis as a novel predictive biomarker and therapeutic target for the stratification and treatment of radioresistant BC patients.

天冬酰胺内肽酶通过ATR通路调节驱动乳腺癌放疗耐药。
背景:肿瘤耐药是当前肿瘤学领域的一个重大挑战。在大多数人类实体瘤中,天冬酰胺内肽酶(AEP)过表达与较差的预后和总生存率降低相关。然而,AEP与癌症患者总生存率降低之间关系的潜在机制尚不清楚。方法:采用高通量蛋白质组学、细胞和分子生物学方法以及乳腺癌(BC)患者的临床数据来鉴定新的、生物学相关的AEP靶点。免疫印迹和qPCR分析定量蛋白和mRNA水平。流式细胞术、共聚焦显微镜、化学抑制剂、siRNA和shrna沉默和DNA修复检测作为功能检测。使用TCGA BC数据集和独立侵袭性导管(ID) BC患者队列的免疫荧光分析来验证我们研究结果的临床相关性。结果:我们发现AEP通过抑制ATR和PPP1R10水平,在BC患者的基因组稳定性和放疗抵抗中发挥双重作用。在AEP水平高的BC患者中发现ATR和PPP1R10水平降低,并与最差预后相关。从机制上讲,AEP抑制ATR水平,降低DNA损伤诱导的细胞死亡和PPP1R10水平,促进Chek1/P53细胞周期检查点激活,使BC细胞有效修复DNA。功能研究显示,aep缺乏导致基因组不稳定,DNA损伤信号增加,Chek1/P53激活减少,DNA修复受损和细胞死亡,磷酸酶抑制剂可恢复aep缺乏的BC细胞的DNA损伤反应。此外,AEP抑制使BC细胞对化疗药物顺铂和依托泊苷敏感。在一组独立的IDBC患者队列中,免疫荧光检测显示导管细胞中AEP水平升高。这些分析表明,放射耐药IDBC患者中较高的AEP水平导致ATR核排出,表明AEPhigh/ATRlow蛋白水平是放射耐药患者分层的有效预测生物标志物。结论:新发现的AEP/ATR/PPP1R10轴在BC的基因组稳定性和放疗耐药中起双重作用。我们的工作为肿瘤耐药的潜在机制提供了新的线索,并有力地证明了AEP/ATR轴作为一种新的预测生物标志物和治疗靶点,可用于放疗耐药BC患者的分层和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信