Helena Beatriz Ferreira, Fábio Trindade, Rita Nogueira-Ferreira, Adelino Leite-Moreira, Rita Ferreira, Marina Dias-Neto, M Rosário Domingues
{"title":"Lipidomic insights on abdominal aortic aneurysm and peripheral arterial disease.","authors":"Helena Beatriz Ferreira, Fábio Trindade, Rita Nogueira-Ferreira, Adelino Leite-Moreira, Rita Ferreira, Marina Dias-Neto, M Rosário Domingues","doi":"10.1007/s00109-025-02524-1","DOIUrl":null,"url":null,"abstract":"<p><p>Abdominal aortic aneurysm (AAA) and peripheral arterial disease (PAD) are two cardiovascular diseases associated with considerable morbidity, mortality and quality of life impairment. As they are multifactorial diseases, several factors contribute to their pathogenesis, including oxidative stress and lipid peroxidation, and these may have key roles in the development of these pathologies. Alterations of the lipid metabolism and lipid profile have been reported in cardiovascular diseases but to a lesser extent in AAA and PAD. Modifications in the profile of some molecular lipid species, in particular, native phospholipid and triglyceride species were mainly reported for AAA, while alterations in the fatty acid profile were noticed in the case of PAD. Oxidized phospholipids were also reported for AAA. Although AAA and PAD have a common atherosclerotic root, lipidomics demonstrates the existence of distinct lipid. Lipidomic research regarding AAA and PAD is still scarce and should be set in motion to increase the knowledge on the lipid changes that occur in these diseases, contributing not only to the discovery of new biomarkers for diagnosis and prognosis assessment but also to tailor precision medicine in the clinical field.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02524-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abdominal aortic aneurysm (AAA) and peripheral arterial disease (PAD) are two cardiovascular diseases associated with considerable morbidity, mortality and quality of life impairment. As they are multifactorial diseases, several factors contribute to their pathogenesis, including oxidative stress and lipid peroxidation, and these may have key roles in the development of these pathologies. Alterations of the lipid metabolism and lipid profile have been reported in cardiovascular diseases but to a lesser extent in AAA and PAD. Modifications in the profile of some molecular lipid species, in particular, native phospholipid and triglyceride species were mainly reported for AAA, while alterations in the fatty acid profile were noticed in the case of PAD. Oxidized phospholipids were also reported for AAA. Although AAA and PAD have a common atherosclerotic root, lipidomics demonstrates the existence of distinct lipid. Lipidomic research regarding AAA and PAD is still scarce and should be set in motion to increase the knowledge on the lipid changes that occur in these diseases, contributing not only to the discovery of new biomarkers for diagnosis and prognosis assessment but also to tailor precision medicine in the clinical field.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.