Language writ large: LLMs, ChatGPT, meaning, and understanding.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-12 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1490698
Stevan Harnad
{"title":"Language writ large: LLMs, ChatGPT, meaning, and understanding.","authors":"Stevan Harnad","doi":"10.3389/frai.2024.1490698","DOIUrl":null,"url":null,"abstract":"<p><p>Apart from what (little) OpenAI may be concealing from us, we all know (roughly) how Large Language Models (LLMs) such as ChatGPT work (their vast text databases, statistics, vector representations, and huge number of parameters, next-word training, etc.). However, none of us can say (hand on heart) that we are <i>not</i> surprised by what ChatGPT has proved to be able to do with these resources. This has even driven some of us to conclude that ChatGPT actually understands. It is not true that it understands. But it is also not true that we understand how it can do what it can do. I will suggest some hunches about benign \"biases\"-convergent constraints that emerge at the LLM scale that may be helping ChatGPT do so much better than we would have expected. These biases are inherent in the nature of language itself, at the LLM scale, and they are closely linked to what it is that ChatGPT <i>lacks</i>, which is <i>direct sensorimotor grounding</i> to connect its words to their referents and its propositions to their meanings. These convergent biases are related to (1) the parasitism of indirect verbal grounding on direct sensorimotor grounding, (2) the circularity of verbal definition, (3) the \"mirroring\" of language production and comprehension, (4) iconicity in propositions at LLM scale, (5) computational counterparts of human \"categorical perception\" in category learning by neural nets, and perhaps also (6) a conjecture by Chomsky about the laws of thought. The exposition will be in the form of a dialogue with ChatGPT-4.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1490698"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1490698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Apart from what (little) OpenAI may be concealing from us, we all know (roughly) how Large Language Models (LLMs) such as ChatGPT work (their vast text databases, statistics, vector representations, and huge number of parameters, next-word training, etc.). However, none of us can say (hand on heart) that we are not surprised by what ChatGPT has proved to be able to do with these resources. This has even driven some of us to conclude that ChatGPT actually understands. It is not true that it understands. But it is also not true that we understand how it can do what it can do. I will suggest some hunches about benign "biases"-convergent constraints that emerge at the LLM scale that may be helping ChatGPT do so much better than we would have expected. These biases are inherent in the nature of language itself, at the LLM scale, and they are closely linked to what it is that ChatGPT lacks, which is direct sensorimotor grounding to connect its words to their referents and its propositions to their meanings. These convergent biases are related to (1) the parasitism of indirect verbal grounding on direct sensorimotor grounding, (2) the circularity of verbal definition, (3) the "mirroring" of language production and comprehension, (4) iconicity in propositions at LLM scale, (5) computational counterparts of human "categorical perception" in category learning by neural nets, and perhaps also (6) a conjecture by Chomsky about the laws of thought. The exposition will be in the form of a dialogue with ChatGPT-4.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信