Frequent Tetanic Exercise Through Electrical Muscle Stimulation May Reduce Immobilization-Induced Muscle Fibrosis by Suppressing Myonuclear Apoptosis.

IF 2.8 3区 医学 Q2 CLINICAL NEUROLOGY
Muscle & Nerve Pub Date : 2025-02-27 DOI:10.1002/mus.28381
Yuichiro Honda, Moeka Yoshimura, Ayumi Takahashi, Seima Okita, Jumpei Miyake, Yudai Ishiki, Chiaki Seguchi, Junya Sakamoto, Minoru Okita
{"title":"Frequent Tetanic Exercise Through Electrical Muscle Stimulation May Reduce Immobilization-Induced Muscle Fibrosis by Suppressing Myonuclear Apoptosis.","authors":"Yuichiro Honda, Moeka Yoshimura, Ayumi Takahashi, Seima Okita, Jumpei Miyake, Yudai Ishiki, Chiaki Seguchi, Junya Sakamoto, Minoru Okita","doi":"10.1002/mus.28381","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction/aims: </strong>Immobilization-induced fibrosis is the primary pathogenesis of muscle contracture, and its trigger is myonuclear apoptosis. Tetanic exercise through electrical muscle stimulation may be able to mitigate myonuclear apoptosis; this could be an intervention strategy for Immobilization-induced fibrosis. In the present study, this was tested using rat skeletal muscles.</p><p><strong>Methods: </strong>Rats were divided into the control, immobilization, low-contraction frequency (LCF), and high-contraction frequency (HCF) groups. The soleus muscles were used as specimens.</p><p><strong>Results: </strong>The number of TUNEL-positive myonuclei was 0.36 ± 0.11, 4.66 ± 0.90, 4.25 ± 0.99, and 1.90 ± 0.46 in the control, immobilization, LCF, and HCF groups, respectively. The HCF group was lower than the immobilization and LCF groups (all p < 0.001). The number of myonuclei and cross-sectional area (CSA) in the HCF group was higher than in the immobilization and LCF groups (all p < 0.001). The number of macrophages, mRNA expression of IL-1β, TGF-β1, and α-SMA, and hydroxyproline contents in the HCF group was lower than in the immobilization and LCF groups (all p < 0.001). There were moderate to strong negative correlations between the number of TUNEL-positive myonuclei and the number of myonuclei and between the CSA and the number of macrophages. Moderate to strong positive correlations were found between the number of myonuclei and the CSA, the number of macrophages and IL-1β, IL-1β and TGF-β1, TGF-β1 and α-SMA, and α-SMA and hydroxyproline contents.</p><p><strong>Discussion: </strong>Frequent tetanic exercise might mitigate macrophage accumulation caused by myonuclear apoptosis and suppress immobilization-induced muscle fibrosis due to fibrosis-associated molecule overexpression.</p>","PeriodicalId":18968,"journal":{"name":"Muscle & Nerve","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muscle & Nerve","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mus.28381","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction/aims: Immobilization-induced fibrosis is the primary pathogenesis of muscle contracture, and its trigger is myonuclear apoptosis. Tetanic exercise through electrical muscle stimulation may be able to mitigate myonuclear apoptosis; this could be an intervention strategy for Immobilization-induced fibrosis. In the present study, this was tested using rat skeletal muscles.

Methods: Rats were divided into the control, immobilization, low-contraction frequency (LCF), and high-contraction frequency (HCF) groups. The soleus muscles were used as specimens.

Results: The number of TUNEL-positive myonuclei was 0.36 ± 0.11, 4.66 ± 0.90, 4.25 ± 0.99, and 1.90 ± 0.46 in the control, immobilization, LCF, and HCF groups, respectively. The HCF group was lower than the immobilization and LCF groups (all p < 0.001). The number of myonuclei and cross-sectional area (CSA) in the HCF group was higher than in the immobilization and LCF groups (all p < 0.001). The number of macrophages, mRNA expression of IL-1β, TGF-β1, and α-SMA, and hydroxyproline contents in the HCF group was lower than in the immobilization and LCF groups (all p < 0.001). There were moderate to strong negative correlations between the number of TUNEL-positive myonuclei and the number of myonuclei and between the CSA and the number of macrophages. Moderate to strong positive correlations were found between the number of myonuclei and the CSA, the number of macrophages and IL-1β, IL-1β and TGF-β1, TGF-β1 and α-SMA, and α-SMA and hydroxyproline contents.

Discussion: Frequent tetanic exercise might mitigate macrophage accumulation caused by myonuclear apoptosis and suppress immobilization-induced muscle fibrosis due to fibrosis-associated molecule overexpression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Muscle & Nerve
Muscle & Nerve 医学-临床神经学
CiteScore
6.40
自引率
5.90%
发文量
287
审稿时长
3-6 weeks
期刊介绍: Muscle & Nerve is an international and interdisciplinary publication of original contributions, in both health and disease, concerning studies of the muscle, the neuromuscular junction, the peripheral motor, sensory and autonomic neurons, and the central nervous system where the behavior of the peripheral nervous system is clarified. Appearing monthly, Muscle & Nerve publishes clinical studies and clinically relevant research reports in the fields of anatomy, biochemistry, cell biology, electrophysiology and electrodiagnosis, epidemiology, genetics, immunology, pathology, pharmacology, physiology, toxicology, and virology. The Journal welcomes articles and reports on basic clinical electrophysiology and electrodiagnosis. We expedite some papers dealing with timely topics to keep up with the fast-moving pace of science, based on the referees'' recommendation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信