On the origin of the P-element invasion in Drosophila simulans.

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY
Filip Wierzbicki, Riccardo Pianezza, Divya Selvaraju, Madeleine Maria Eller, Robert Kofler
{"title":"On the origin of the P-element invasion in Drosophila simulans.","authors":"Filip Wierzbicki, Riccardo Pianezza, Divya Selvaraju, Madeleine Maria Eller, Robert Kofler","doi":"10.1186/s13100-025-00345-0","DOIUrl":null,"url":null,"abstract":"<p><p>The horizontal transfer (HT) of the P-element is one of the best documented cases of the HT of a transposable element. The P-element invaded natural D. melanogaster populations between 1950 and 1980 following its HT from Drosophila willistoni, a species endemic to South and Central America. Subsequently, it spread in D. simulans populations between 2006 and 2014, following a HT from D. melanogaster. The geographic region where the spread into D. simulans occurred is unclear, as both involved species are cosmopolitan. The P-element differs between these two species by a single base substitution at site 2040, where D. melanogaster carries a 'G' and D. simulans carries an 'A'. It has been hypothesized that this base substitution was a necessary adaptation that enabled the spread of the P-element in D. simulans, potentially explaining the 30-50-year lag between the invasions of D. melanogaster and D. simulans. To test this hypothesis, we monitored the invasion dynamics of P-elements with both alleles in experimental populations of D. melanogaster and D. simulans. Our results indicate that the allele at site 2040 has a minimal impact on the invasion dynamics of the P-element and, therefore, was not necessary for the invasion of D. simulans. However, we found that the host species significantly influenced the invasion dynamics, with higher P-element copy numbers accumulating in D. melanogaster than in D. simulans. Finally, based on SNPs segregating in natural D. melanogaster populations, we suggest that the horizontal transfer of the P-element from D. melanogaster to D. simulans likely occurred around Tasmania.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"16 1","pages":"7"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-025-00345-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The horizontal transfer (HT) of the P-element is one of the best documented cases of the HT of a transposable element. The P-element invaded natural D. melanogaster populations between 1950 and 1980 following its HT from Drosophila willistoni, a species endemic to South and Central America. Subsequently, it spread in D. simulans populations between 2006 and 2014, following a HT from D. melanogaster. The geographic region where the spread into D. simulans occurred is unclear, as both involved species are cosmopolitan. The P-element differs between these two species by a single base substitution at site 2040, where D. melanogaster carries a 'G' and D. simulans carries an 'A'. It has been hypothesized that this base substitution was a necessary adaptation that enabled the spread of the P-element in D. simulans, potentially explaining the 30-50-year lag between the invasions of D. melanogaster and D. simulans. To test this hypothesis, we monitored the invasion dynamics of P-elements with both alleles in experimental populations of D. melanogaster and D. simulans. Our results indicate that the allele at site 2040 has a minimal impact on the invasion dynamics of the P-element and, therefore, was not necessary for the invasion of D. simulans. However, we found that the host species significantly influenced the invasion dynamics, with higher P-element copy numbers accumulating in D. melanogaster than in D. simulans. Finally, based on SNPs segregating in natural D. melanogaster populations, we suggest that the horizontal transfer of the P-element from D. melanogaster to D. simulans likely occurred around Tasmania.

论拟果蝇p元素入侵的起源。
p -元的水平转移(HT)是文献记载最好的转座元的水平转移之一。1950 - 1980年间,p元素从中南美洲特有物种威利斯托尼果蝇(Drosophila willistoni)侵染而来,侵入黑腹田鼠自然种群。随后,在2006年至2014年期间,在黑腹d.m anogaster的HT之后,它在d.m anans种群中传播。由于涉及的两个物种都是世界性的,因此尚不清楚在哪个地理区域发生了向拟象d的传播。这两个物种的p元素的不同之处在于在2040位点有一个碱基替换,其中D. melanogaster携带一个“G”,D. simulans携带一个“a”。据推测,这种碱基替换是一种必要的适应,使得p元素在D. simulans中传播,这可能解释了D. melanogaster和D. simulans入侵之间30-50年的滞后。为了验证这一假设,我们在实验群体中监测了p元素与两个等位基因的入侵动态。我们的研究结果表明,位点2040的等位基因对p元素的入侵动力学影响最小,因此不是D. simulans入侵的必要条件。然而,我们发现寄主物种对入侵动态有显著的影响,黑腹田鼠体内积累的p元素拷贝数高于模拟田鼠。最后,基于自然种群的snp分离,我们认为p元素的水平转移可能发生在塔斯马尼亚附近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信