{"title":"Multi-omics analysis reveals associations between gut microbiota and host transcriptome in colon cancer patients.","authors":"Yuling Qin, Qiang Wang, Qiumei Lin, Fengfei Liu, Xiaolan Pan, Caibiao Wei, Junxian Chen, Taijun Huang, Min Fang, Weilong Yang, Linghui Pan","doi":"10.1128/msystems.00805-24","DOIUrl":null,"url":null,"abstract":"<p><p>Colon cancer (CC) is one of the most common cancers globally, which is associated with the gut microbiota intimately. In current research, exploring the complex interaction between microbiomes and CC is a hotspot. However, the information on microbiomes in most previous studies is based on fecal, which does not fully display the microbial environment of CC. Herein, we collected mucosal and tissue samples from both the tumor and normal regions of 19 CC patients and clarified the composition of mucosal microbiota by 16S rRNA and metagenomic sequencing. Additionally, RNA-Seq was also conducted to identify the different expression genes between tumor and normal tissue samples. We revealed significantly different microbial community structures and expression profiles to CC. Depending on correlation analysis, we demonstrated that 1,472 genes were significantly correlated with CC tumor microbiota. Our study reveals a significant enrichment of <i>Campylobacter jejuni</i> in the mucosa of CC, which correlates with bile secretion. Additionally, we observe a negative correlation between <i>C. jejuni</i> and immune cells CD4+ Tem and mast cells. Finally, we discovered that metabolic bacterial endosymbiont of <i>Bathymodiolus</i> sp., <i>Bacillus wiedmannii</i>, and <i>Mycobacterium tuberculosis</i> had a significant survival value for CC, which was ignored by previous research. Overall, our study expands the understanding of the complex interplay between microbiota and CC and provides new targets for the treatment of CC.</p><p><strong>Importance: </strong>This study contributes to our understanding of the interaction between microbiota and colon cancer (CC). By examining mucosal and tissue samples rather than solely relying on fecal samples, we have uncovered previously unknown aspects of CC-associated microbiota. Our findings reveal distinct microbial community structures and gene expression profiles correlated with CC progression. Notably, the enrichment of <i>Campylobacter jejuni</i> in CC mucosa, linked to bile secretion, underscores potential mechanisms in CC pathogenesis. Additionally, observed correlations between microbial taxa and immune cell populations offer new avenues for immunotherapy research in CC. Importantly, this study introduces CC-associated microbiota with survival implications for CC, expanding therapeutic targets beyond conventional strategies. By elucidating these correlations, our study not only contributes to uncovering the potential role of gut microbiota in colon cancer but also establishes a foundation for mechanistic studies of gut microbiota in colon cancer, emphasizing the broader impact of microbiota research on cancer biology.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0080524"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00805-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colon cancer (CC) is one of the most common cancers globally, which is associated with the gut microbiota intimately. In current research, exploring the complex interaction between microbiomes and CC is a hotspot. However, the information on microbiomes in most previous studies is based on fecal, which does not fully display the microbial environment of CC. Herein, we collected mucosal and tissue samples from both the tumor and normal regions of 19 CC patients and clarified the composition of mucosal microbiota by 16S rRNA and metagenomic sequencing. Additionally, RNA-Seq was also conducted to identify the different expression genes between tumor and normal tissue samples. We revealed significantly different microbial community structures and expression profiles to CC. Depending on correlation analysis, we demonstrated that 1,472 genes were significantly correlated with CC tumor microbiota. Our study reveals a significant enrichment of Campylobacter jejuni in the mucosa of CC, which correlates with bile secretion. Additionally, we observe a negative correlation between C. jejuni and immune cells CD4+ Tem and mast cells. Finally, we discovered that metabolic bacterial endosymbiont of Bathymodiolus sp., Bacillus wiedmannii, and Mycobacterium tuberculosis had a significant survival value for CC, which was ignored by previous research. Overall, our study expands the understanding of the complex interplay between microbiota and CC and provides new targets for the treatment of CC.
Importance: This study contributes to our understanding of the interaction between microbiota and colon cancer (CC). By examining mucosal and tissue samples rather than solely relying on fecal samples, we have uncovered previously unknown aspects of CC-associated microbiota. Our findings reveal distinct microbial community structures and gene expression profiles correlated with CC progression. Notably, the enrichment of Campylobacter jejuni in CC mucosa, linked to bile secretion, underscores potential mechanisms in CC pathogenesis. Additionally, observed correlations between microbial taxa and immune cell populations offer new avenues for immunotherapy research in CC. Importantly, this study introduces CC-associated microbiota with survival implications for CC, expanding therapeutic targets beyond conventional strategies. By elucidating these correlations, our study not only contributes to uncovering the potential role of gut microbiota in colon cancer but also establishes a foundation for mechanistic studies of gut microbiota in colon cancer, emphasizing the broader impact of microbiota research on cancer biology.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.