Yeongrin Kim, Moonjung Jeun, Heung Kyoung Lee, Ji U Choi, Simon Park, Chi Hoon Park
{"title":"TET2 downregulation enhances the antitumor efficacy of CD19 CAR T cells in a preclinical model.","authors":"Yeongrin Kim, Moonjung Jeun, Heung Kyoung Lee, Ji U Choi, Simon Park, Chi Hoon Park","doi":"10.1186/s40164-025-00609-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell therapy has demonstrated significant clinical efficacy in patients with hematologic cancers. However, long-term follow-up studies indicate that only 50% of patients remain in complete remission after three years. To overcome these limitations, we investigated a strategy to enhance the antitumor activity of CAR T cells through gene modification. Based on previous research results demonstrating that CAR T cells with disrupted TET2, a methylcytosine dioxygenase, exhibit enhanced antitumor effects compared to conventional CAR T, we developed CAR T cells in which TET2 is downregulated by TET2 shRNA. Among the screened TET2-specific shRNAs, TET2-shRNA-1 was identified as the most effective sequence for gene silencing. Using this sequence, we constructed an all-in-one vector co-expressing CD19 CAR and TET2 shRNA. In vitro studies demonstrated that TET2 knockdown CD19 CAR T cells exhibited comparable cytolytic activity against CD19-positive cancer cells compared to conventional CD19 CAR T cells. However, interestingly, in xenograft mouse model using NSG mice, TET2 knockdown CAR T cells showed significantly improved antitumor activity compared to conventional CAR T cells. Our study demonstrates that shRNA-mediated knockdown of TET2 is a promising strategy to enhance the antitumor activity of CD19 CAR T cells in a preclinical model.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"23"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00609-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated significant clinical efficacy in patients with hematologic cancers. However, long-term follow-up studies indicate that only 50% of patients remain in complete remission after three years. To overcome these limitations, we investigated a strategy to enhance the antitumor activity of CAR T cells through gene modification. Based on previous research results demonstrating that CAR T cells with disrupted TET2, a methylcytosine dioxygenase, exhibit enhanced antitumor effects compared to conventional CAR T, we developed CAR T cells in which TET2 is downregulated by TET2 shRNA. Among the screened TET2-specific shRNAs, TET2-shRNA-1 was identified as the most effective sequence for gene silencing. Using this sequence, we constructed an all-in-one vector co-expressing CD19 CAR and TET2 shRNA. In vitro studies demonstrated that TET2 knockdown CD19 CAR T cells exhibited comparable cytolytic activity against CD19-positive cancer cells compared to conventional CD19 CAR T cells. However, interestingly, in xenograft mouse model using NSG mice, TET2 knockdown CAR T cells showed significantly improved antitumor activity compared to conventional CAR T cells. Our study demonstrates that shRNA-mediated knockdown of TET2 is a promising strategy to enhance the antitumor activity of CD19 CAR T cells in a preclinical model.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.