Cytosolic CRISPR RNAs for efficient application of RNA-targeting CRISPR-Cas systems.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Reports Pub Date : 2025-04-01 Epub Date: 2025-02-26 DOI:10.1038/s44319-025-00399-4
Ezra C K Cheng, Joe K C Lam, S Chul Kwon
{"title":"Cytosolic CRISPR RNAs for efficient application of RNA-targeting CRISPR-Cas systems.","authors":"Ezra C K Cheng, Joe K C Lam, S Chul Kwon","doi":"10.1038/s44319-025-00399-4","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technologies have evolved rapidly over the past decade with the continuous discovery of new Cas systems. In particular, RNA-targeting CRISPR-Cas13 proteins are promising single-effector systems to regulate target mRNAs without altering genomic DNA, yet the current Cas13 systems are restrained by suboptimal efficiencies. Here, we show that U1 promoter-driven CRISPR RNAs (crRNAs) increase the efficiency of various applications, including RNA knockdown and editing, without modifying the Cas13 protein effector. We confirm that U1-driven crRNAs are exported into the cytoplasm, while conventional U6 promoter-driven crRNAs are mostly confined to the nucleus. Furthermore, we reveal that the end positions of crRNAs expressed by the U1 promoter are consistent regardless of guide sequences and lengths. We also demonstrate that U1-driven crRNAs, but not U6-driven crRNAs, can efficiently repress the translation of target genes in combination with catalytically inactive Cas13 proteins. Finally, we show that U1-driven crRNAs can counteract the inhibitory effect of miRNAs. Our simple and effective engineering enables unprecedented cytosolic RNA-targeting applications.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"1891-1912"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00399-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technologies have evolved rapidly over the past decade with the continuous discovery of new Cas systems. In particular, RNA-targeting CRISPR-Cas13 proteins are promising single-effector systems to regulate target mRNAs without altering genomic DNA, yet the current Cas13 systems are restrained by suboptimal efficiencies. Here, we show that U1 promoter-driven CRISPR RNAs (crRNAs) increase the efficiency of various applications, including RNA knockdown and editing, without modifying the Cas13 protein effector. We confirm that U1-driven crRNAs are exported into the cytoplasm, while conventional U6 promoter-driven crRNAs are mostly confined to the nucleus. Furthermore, we reveal that the end positions of crRNAs expressed by the U1 promoter are consistent regardless of guide sequences and lengths. We also demonstrate that U1-driven crRNAs, but not U6-driven crRNAs, can efficiently repress the translation of target genes in combination with catalytically inactive Cas13 proteins. Finally, we show that U1-driven crRNAs can counteract the inhibitory effect of miRNAs. Our simple and effective engineering enables unprecedented cytosolic RNA-targeting applications.

有效应用 RNA 靶向 CRISPR-Cas 系统的细胞膜 CRISPR RNA。
在过去的十年中,随着新的Cas系统的不断发现,聚集的规则间隔短回文重复序列/CRISPR相关蛋白(CRISPR/Cas)技术得到了迅速的发展。特别是,rna靶向CRISPR-Cas13蛋白是一种有前途的单效应系统,可以在不改变基因组DNA的情况下调节目标mrna,但目前的Cas13系统受到次优效率的限制。在这里,我们发现U1启动子驱动的CRISPR RNA (crrna)在不修饰Cas13蛋白效应子的情况下提高了各种应用的效率,包括RNA敲低和编辑。我们证实了u1驱动的crrna被输出到细胞质中,而传统的U6启动子驱动的crrna大多局限于细胞核。此外,我们发现U1启动子表达的crrna的末端位置是一致的,无论引导序列和长度如何。我们还证明了u1驱动的crRNAs,而不是u6驱动的crRNAs,可以有效地抑制靶基因的翻译,并与催化活性不高的Cas13蛋白结合。最后,我们证明了u1驱动的crrna可以抵消mirna的抑制作用。我们简单有效的工程使前所未有的细胞质rna靶向应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信