Discovery of the Low-Hemorrhagic Antithrombotic Effect of Montelukast by Targeting FXIa in Mice.

IF 7.4 1区 医学 Q1 HEMATOLOGY
Yang Zhou, Dong Wang, Juhong Wu, Yingying Qi, Meiru Song, Huiqiao Yao, Christopher Kai Liao, Haili Lin, Meijuan Huang, Dexiang Zhuo, Longguang Jiang, Cai Yuan, Yuanzhong Chen, Mingdong Huang, Jinyu Li, Peng Xu
{"title":"Discovery of the Low-Hemorrhagic Antithrombotic Effect of Montelukast by Targeting FXIa in Mice.","authors":"Yang Zhou, Dong Wang, Juhong Wu, Yingying Qi, Meiru Song, Huiqiao Yao, Christopher Kai Liao, Haili Lin, Meijuan Huang, Dexiang Zhuo, Longguang Jiang, Cai Yuan, Yuanzhong Chen, Mingdong Huang, Jinyu Li, Peng Xu","doi":"10.1161/ATVBAHA.124.322145","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>FXIa (coagulation factor XIa) is considered as a promising antithrombotic target with reduced hemorrhagic liabilities. The objective of this study was to identify a small-molecule inhibitor of FXIa as a potential low-hemorrhagic anticoagulant.</p><p><strong>Methods: </strong>A high-throughput virtual screening was conducted using a drug repurposing library with the catalytic domain of FXIa as the bait. The identified inhibitor's anticoagulant activity was evaluated in vitro and in both arterial and venous murine thrombotic models. The dependency of the inhibitor on FXIa was further examined using FXI<sup>-/-</sup> mice. Hemorrhagic risks were subsequently evaluated in models of both localized and major bleeding.</p><p><strong>Results: </strong>Virtual screening led to the identification of montelukast, a commonly used antiasthmatic drug, as a potent and specific FXIa inhibitor (half maximal inhibitory concentration of 0.17 μmol/L). MK exhibited anticoagulant effects comparable to those of 2 mostly prescribed anticoagulants (warfarin and apixaban) in both arterial and venous thrombotic models. Notably, in stark contrast to the pronounced hemorrhagic risks of warfarin and apixaban, MK did not measurably increase the tendency of localized or major bleeding. Furthermore, MK did not prolong the time to arterial thrombotic occlusion in FXI<sup>-/-</sup> mice, while effectively inhibited arterial occlusion induced by the reinfusion of recombinant FXIa, confirming that MK's anticoagulant activity is mediated by plasma FXIa. Additionally, MK ameliorated inflammation levels and mitigated pulmonary microthrombus formation in a septic mouse model. Moreover, combination therapy with MK enhanced the antithrombotic effects of antiplatelets without an obvious increase of hemorrhage.</p><p><strong>Conclusions: </strong>This proof-of-concept study suggests the potent low-hemorrhage antithrombotic effect of MK by targeting FXIa and unveiling a new therapeutic application of MK.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"e150-e162"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.322145","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: FXIa (coagulation factor XIa) is considered as a promising antithrombotic target with reduced hemorrhagic liabilities. The objective of this study was to identify a small-molecule inhibitor of FXIa as a potential low-hemorrhagic anticoagulant.

Methods: A high-throughput virtual screening was conducted using a drug repurposing library with the catalytic domain of FXIa as the bait. The identified inhibitor's anticoagulant activity was evaluated in vitro and in both arterial and venous murine thrombotic models. The dependency of the inhibitor on FXIa was further examined using FXI-/- mice. Hemorrhagic risks were subsequently evaluated in models of both localized and major bleeding.

Results: Virtual screening led to the identification of montelukast, a commonly used antiasthmatic drug, as a potent and specific FXIa inhibitor (half maximal inhibitory concentration of 0.17 μmol/L). MK exhibited anticoagulant effects comparable to those of 2 mostly prescribed anticoagulants (warfarin and apixaban) in both arterial and venous thrombotic models. Notably, in stark contrast to the pronounced hemorrhagic risks of warfarin and apixaban, MK did not measurably increase the tendency of localized or major bleeding. Furthermore, MK did not prolong the time to arterial thrombotic occlusion in FXI-/- mice, while effectively inhibited arterial occlusion induced by the reinfusion of recombinant FXIa, confirming that MK's anticoagulant activity is mediated by plasma FXIa. Additionally, MK ameliorated inflammation levels and mitigated pulmonary microthrombus formation in a septic mouse model. Moreover, combination therapy with MK enhanced the antithrombotic effects of antiplatelets without an obvious increase of hemorrhage.

Conclusions: This proof-of-concept study suggests the potent low-hemorrhage antithrombotic effect of MK by targeting FXIa and unveiling a new therapeutic application of MK.

孟鲁司特靶向FXIa小鼠低出血抗血栓作用的发现。
背景:FXIa(凝血因子XIa)被认为是一种很有前途的抗血栓靶点,可以降低出血性负荷。本研究的目的是鉴定一种小分子FXIa抑制剂作为潜在的低出血抗凝剂。方法:以FXIa催化结构域为诱饵,利用药物重组文库进行高通量虚拟筛选。在体外和小鼠动脉和静脉血栓模型中评估了所鉴定的抑制剂的抗凝活性。用FXI-/-小鼠进一步检测该抑制剂对FXIa的依赖性。随后在局部出血和大出血模型中评估出血风险。结果:虚拟筛选鉴定出常用平喘药孟鲁司特是一种有效的特异性FXIa抑制剂(IC50为0.17 μmol/L)。在动脉和静脉血栓模型中,MK的抗凝作用与两种常用的抗凝剂(华法林和阿哌沙班)相当。值得注意的是,与华法林和阿哌沙班明显的出血风险形成鲜明对比的是,MK并没有明显增加局部或大出血的倾向。此外,MK没有延长FXI-/-小鼠动脉血栓闭塞的时间,但能有效抑制重组FXIa再输注引起的动脉闭塞,证实MK的抗凝活性是由血浆FXIa介导的。此外,MK改善了脓毒症小鼠模型的炎症水平并减轻了肺微血栓的形成。此外,与MK联合治疗可增强抗血小板的抗血栓作用,但未明显增加出血。结论:这项概念验证研究表明,MK靶向FXIa具有强大的低出血抗血栓作用,并揭示了MK的新治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信