Preliminary Investigations on Acyl Hydrazones Bearing Sulfonamides as Inhibitors of the Human Carbonic Anhydrase Isoforms I, II, IX, and XII.

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Efe Doğukan Dincel, Ebru Didem Kuran, Abdulilah Ece, Faika Başoğlu-Ünal, Gioele Renzi, Gloria Badii, Fabrizio Carta, Cladiu T Supuran, Nuray Ulusoy-Güzeldemirci
{"title":"Preliminary Investigations on Acyl Hydrazones Bearing Sulfonamides as Inhibitors of the Human Carbonic Anhydrase Isoforms I, II, IX, and XII.","authors":"Efe Doğukan Dincel, Ebru Didem Kuran, Abdulilah Ece, Faika Başoğlu-Ünal, Gioele Renzi, Gloria Badii, Fabrizio Carta, Cladiu T Supuran, Nuray Ulusoy-Güzeldemirci","doi":"10.2174/0118715206356980250113074705","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The present study aims to identify the synthesis and structural characterization of acyl hydrazone- sulfonamide-containing compounds that were tested in vitro on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII.</p><p><strong>Methods: </strong>Herein, acyl hydrazone derivatives containing the primary sulfonamide moiety were synthesized via a three-step synthetic pathway starting from the commercially available 4-sulfamoyl benzoic acid. Structural characterizations of the final compounds were assessed through IR IR, 1H-NMR, 13C-NMR, and elemental analyses. The in vitro profiling activity of the final compounds on the Carbonic Anhydrases (CAs; EC 4.2.1.1) I, II, IX, and XII were performed by means of the stopped-flow technique and revealed nanomolar inhibitory potencies on the selected targets. Molecular docking and molecular dynamic simulations afforded a detailed understanding of the binding modes of the most effective compounds.</p><p><strong>Results: </strong>We reported the synthesis and structural characterization of 25 acyl hydrazone-sulfonamide-containing compounds that were tested in vitro on the hCAs I, II, IX, and XII isoforms for their inhibitory features. Overall, all compounds showed nanomolar inhibition potencies on the panel of hCAs considered, and their binding modes were deciphered by means of in-silico studies. Molecular docking followed by MD simulations confirmed the stability of 4l-hCA I, 4n-hCA II, 4t-hCA II, 4v-hCA XII, and 4w-hCA XII complexes.</p><p><strong>Conclusion: </strong>This study presents a deep understanding of the structural determinants influencing the affinity and selectivity of the designed compounds towards different hCAs, thus offering valuable insights for further optimization and development in the field.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206356980250113074705","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The present study aims to identify the synthesis and structural characterization of acyl hydrazone- sulfonamide-containing compounds that were tested in vitro on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII.

Methods: Herein, acyl hydrazone derivatives containing the primary sulfonamide moiety were synthesized via a three-step synthetic pathway starting from the commercially available 4-sulfamoyl benzoic acid. Structural characterizations of the final compounds were assessed through IR IR, 1H-NMR, 13C-NMR, and elemental analyses. The in vitro profiling activity of the final compounds on the Carbonic Anhydrases (CAs; EC 4.2.1.1) I, II, IX, and XII were performed by means of the stopped-flow technique and revealed nanomolar inhibitory potencies on the selected targets. Molecular docking and molecular dynamic simulations afforded a detailed understanding of the binding modes of the most effective compounds.

Results: We reported the synthesis and structural characterization of 25 acyl hydrazone-sulfonamide-containing compounds that were tested in vitro on the hCAs I, II, IX, and XII isoforms for their inhibitory features. Overall, all compounds showed nanomolar inhibition potencies on the panel of hCAs considered, and their binding modes were deciphered by means of in-silico studies. Molecular docking followed by MD simulations confirmed the stability of 4l-hCA I, 4n-hCA II, 4t-hCA II, 4v-hCA XII, and 4w-hCA XII complexes.

Conclusion: This study presents a deep understanding of the structural determinants influencing the affinity and selectivity of the designed compounds towards different hCAs, thus offering valuable insights for further optimization and development in the field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信